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Abstract 
 
 

FITTING A DISTRIBUTION TO CATASTROPHIC EVENT 
 
 

By Ebenezer Kwadwo Osei 
 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 
at Virginia Commonwealth University. 

 
Virginia Commonwealth University, 2011 

 
 

Co-Director: Dr. David Bauer 
Professor, Department of Statistical Sciences and Operations Research 

 
 
 

Statistics is a branch of mathematics which is heavily employed in the area of Actuarial 

Mathematics. This thesis first reviews the importance of statistical distributions in the analysis of 

insurance problems and the applications of Statistics in the area of risk and insurance. The 

Normal, Log-normal, Pareto, Gamma, standard Beta, Frechet, Gumbel, Weibull, Poisson, 

binomial, and negative binomial distributions are looked at and the importance of these 

distributions in general insurance is also emphasized. 

A careful review of literature is to provide practitioners in the general insurance industry 

with statistical tools which are of immediate application in the industry. These tools include 

estimation methods and fit statistics popular in the insurance industry. Finally this thesis carries 

out the task of fitting statistical distributions to the flood loss data in the 50 States of the United 

States. 
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Chapter 1: Introduction 

1.1 Background 

The need for risk management has become necessary because without it, it is very 

difficult to deal with losses resulting from events like Hurricane Katrina that hit the gulf coast in 

2005, the New Orleans flooding and the Tsunami which occurred in the Indian Ocean. O’Connor 

et al (2004) explains that human societies worldwide have always experienced floods, creating a 

prominent role for floods in legends, religions, and history. Undeniably, many more types of 

these floods of this magnitude have occurred but have not yet been studied or reported.  

Floods are among the most powerful forces on earth and have played an important role in 

the past as far as shaping our world is concerned. But the recognition of the important role that 

floods play in shaping our cultural and physical landscape also owes to increased understanding 

of the variety of mechanisms that cause floods and how the types and magnitudes of floods can 

vary with time and space. Floods come about as a result of too much rainfall, snow or a mixture 

of high river levels and high tides. But Thompson (1964) indicated that most of the largest 

documented floods resulted from breaches of other types of natural dams, including landslide 

dams, ice dams from smaller glaciers, releases from caldera lakes and ice-jam floods. The 

emergence of these natural disasters has left questions about who is in charge of the economic 

and human losses of these catastrophes.  

It is in this regard that the government and insurance companies (insurers) have come 

together in the past to take away the suffering of such disasters by establishing the Federal 

Emergency Management Agency (FEMA) in 1979. The work of FEMA came about through the 
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congressional act of 1803 to provide disaster relief on the federal level after a fire destroyed a 

New Hampshire town (Federal Emergency Management Agency). In 1968 the National Flood 

Insurance Program (NFIP) was started by the National Flood Insurance Agency (NFIA). FEMA 

operates under the auspices of the Department of Homeland Security (DHS) since becoming part 

of DHS in 2003. This agency has helped promote economic growth and development of the 

country in the wake of such catastrophes.   

This thesis carries out the task of fitting distributions to loss data. The economic effect of 

this statistical exercise is manifested in determination of insurance premiums. In the following 

section I discuss briefly how insurance premiums can be determined following statistical 

analysis. 

 
1.2 How to Calculate an Insurance Premium 
 

Policyholders buy insurance to obtain security from risk. Having analyzed a random risk 

S, an insurance company will want to decide how much it should charge to handle (take 

responsibility for) the risk, and whether or not it should set aside reserves in case of extreme or 

unlikely event occurring. These problems have to be considered in the light of a very competitive 

market for insurance. Given a risk exposure S, we refer to its expected loss value E(S) as the 

Actuarially Fair Premium (AFP) for the risk (Mas-Colel et al 1995 and Kleiber et al 2003). 

Clearly, an insurance company must charge more than the premium to cover expenses, allow for 

variability in the number and amount of claims, and make a profit. In setting the premium rates, 

the general insurer must take account of the relevant risk factors and behavior of the 

policyholders with respect of these risk factors. In determining a premium for a risk, one 

accounts for variability in all these tailors and also take into account administrative cost to obtain 
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the gross premium. Actually, administrative costs are clearly important in practice, and changes 

in policy details (like the introduction of deductible) often influence both claim and 

administrative costs. In order to quote a premium for a product, insurance companies need to 

predict future frequency and severity of claims. Hossack et al (1983) explained that calculating 

the premium must take into account claim frequency and average claim size. I present a scenario 

on how to calculate flood premium based on the expected value principle (Boland 2007).     

Let’s assume that premiums vary by state, since some states clearly are more likely to 

have flood events than others. 

 Assume, for a given year for a given state: 

·         f is the probability of a flood event that qualifies for a claim (obtained from statistical 

analysis of frequency of claims). 

·         n is the number of insured entities in the state. 

·         c is expected claim amount for a single insured entity given a qualifying event (obtained 

from statistical analysis of severity of losses). 

·         C is total expected claim amount, fnc (For this study, C was provided and I wish to find the 

probability distribution of C) 

O is the operational cost to run the insurance company in the state.  This would include     

staffing (salary and benefits), real estate, taxes, legal, and incidental cost of running the business 

etc. 

·       P is the premium per insured entity. 

·       T is the total cost (claim plus operational costs,C O ) 

·       R is the total premium revenue,  nP
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·      M is the target profit margin, i.e. the fraction that the Revenue exceeds the Total costs                                   

M = 1
R

T
    

( 1) ( 1)( ) ( 1)(nP R M T M C O M C O         )  

So, 

( 1)(
opt

)M C O
P

n

 
  

So, based on the year from October 1, 2006 through September 30, 2007, for the state of 

Virginia: 

Total number of policies in force = 104,507 

Total claim payments = $14,342,000.00 

Estimated average annual premium for Virginia in 2007, 

estP  = ($14,342,000 payments/104,507 policies in force) × (1.02 cost plus margin) = $164.68 

 By inspection, we see that the greater n (number of flood insurance policy holders), the lower 

the premium, because operational costs tend to be relatively fixed. 

Table B.45 in appendix B (on page 113) gives the goodness-of-fit and distribution 

parameters for the state of Virginia. For the premium calculation, the estimated value for C will 

be different depending on whether you choose to fit the Weibull distribution which failed to 

reject or the Gamma distribution which was rejected for the State of Virginia using the 

Kolmogorov-Smirnov (K-S) statistic. By illustrating why it is important to obtain the correct 

probability distribution, I used the mean of the distributions in calculating the actuarially fair 

premium or expected cost, C, for Virginia. 
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Table 1.1: Table showing why it is important to obtain the correct probability distribution. 

Parameters          Weibull Distribution                     Gamma Distribution     Difference in Mean 

alpha                       0.3013                                                  0.1760 

beta                       27.5500                                            1384.4000 

Mean                     27.55*Gamma Func (4.3185)               0.1760*1384.4 

AFR                    250.0930                                              243.6406                                  2.65% 

So the premium calculations will naturally be different by about 2.6%, depending on the 

distribution chosen as shown in Table 1.1. The error results from fitting the wrong distribution. 

1.3 Literature Review 

Risk Management and Insurance 

Dillon (2009) define terrorism risk management as a systematic, analytical process to 

determine the likelihood that a threat will harm individuals or physical assets and to identify 

actions to reduce risk and mitigate the consequences of a terrorist attack. The definition can 

easily be extended to all perils. 

The insurance industry revolves around managing the losses arising out of the exposures 

to different pure risks. Pure risks are those that could lead to only losses, with no possibility of a 

gain. Thus insurance coverage does not extend to cover risks associated with investments in the 

stock market. This Hossack et al (1983) explain that the risk theory has been a useful guide to 

the relationship between reserves, retentions and the level of risk, and the general order of 

magnitude of these quantities.  

The generic risk management principles divide the aggregate losses into two parts, 

frequency and severity. The discussion of this traditional risk management matrix follows the 

description of Baranoff (2008). 
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Table 1.2: This table shows a generic risk management strategy based upon frequency and severity of losses 

  

Traditional Risk Management Matrix 
 
 Low Frequency of Losses High Frequency of Losses 
Low Severity of Losses Retention—Self-insurance  Retention with Loss 

control—Risk reduction 
High Severity of Losses Transfer—Insurance Avoidance 
 

When there is high severity of losses and high frequency of losses, insurance companies 

are likely to avoid the situation as shown in Table 1.2. This is because there is a high chance of 

accumulating big losses and debt. Of course, one cannot always avoid risk and not all avoidance 

necessarily results in zero loss. This is because the avoidance of one peril may create another. 

For example, a group of people may decide to travel in a car instead of an airplane because of the 

fear of flying. As these people avoided the possibility of being in an airplane crash, they have on 

the other hand increased their risk of being in a car accident. Per miles traveled, deaths resulting 

from car accidents are far greater than that of aircraft victims and thus, the group has increased 

their probability of injury. 

From Table 1.2 low frequency and low severity gives room for risk retention. Here, 

individual entities self-insure the risk. No matter what the financial loss will be, they will take 

care of the loss themselves without external insurance company playing any role.  

To efficiently retain risk, it is important for insurance companies to make good predictions on 

losses and its subsequent arrangements made for payment of losses.    

 When there is high frequency and low severity of losses under the risk management 
 
matrix we find control of the frequency of losses to be an effective risk management strategy. 

Where frequency is largely recorded, steps to avert losses may be useful. This is because 

individuals and organizations can pay out of their own funds when losses are of low value. 



www.manaraa.com

7 
 
 
Under the central strategy, efforts are made to lessen the probability of a loss occurring. For 

example, if one still wants to drive regardless of whether there is snow or sleet, one would want 

to take instructions to improve his skills of driving to decrease the likelihood of being injured in 

an accident.  

 The aim of preventing and reducing losses to the bare minimum involves human activity 

and expense. At any given time, economic hardships place limits on what may be done, although 

what is considered too costly at one time may be inexpensive at a later date. To exemplify, in the 

past, efforts were not made to prevent workplace injuries because the employees were regarded 

as negligent.  

The final element of the risk management matrix involves low frequency and high 

severity of losses as has been indicated in Table 1.2. This gives room for insurance providers to 

operate. When there is a low probability of an event occurring coupled with a high severity of 

losses, this may be successfully managed by transferring risk to an outside party through the 

purchase of an insurance contract.  

An example might be a loss resulting due to danger of the manufacture of a faulty 

product or an interruption of business due to the damage in a factory. In this case transferring of 

risk would mean paying someone to take care of some or all of the risk of certain financial losses 

that cannot be avoided or handled. But Panger and Willmott (1992) explain that prudent decision 

makers reduce their demand for insurance when excluded losses increase in size or riskiness, 

absorbing the risk themselves in a calculated way. On the other hand some business risks can 

also be transferred to their shareholders through the formation of a corporation with limited 

liability.   
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In the case of corporations, the owners are faced with the responsibility of paying all 

debts and other financial obligations when they are faced with a serious possible loss especially 

when the liabilities of the firm exceed its assets. If the firm is managed by a sole proprietor, he 

faces the risk by himself. In the case of a partnership of the firm, every partner is responsible 

without limit for the debts of the firm. In a limited liability firm, they prefer them to be limited to 

the investment in the corporation without affecting the personal property of shareholders.  

Because both individuals and corporations want to transfer risk, it has given room to Risk 

Pooling where the third party (insurer) brings all the risk exposures together to compute possible 

future losses with some level of prediction. This leads to a risk transfer where risk is shifted from 

a person or entity (insured) to a third party.  

The insurance contract is a contingent contract, which implies that a cash outflow occurs 

from the insurance company only when there is a loss to the covered party. The insurance 

company collects the premiums with a promise to pay for the loss when it occurs in the future. 

This implies that the insurance company must be able to reasonably predict future losses in order 

to determine the premiums today. To be able to manage the insurance business, there is the need 

to have a forecast of events that are likely to happen and how often each event is likely to occur. 

This leads to a role for probability and statistics in the field of insurance. Thus, a probability 

distribution of loss arises when there are representations of all possible loss events along with 

their associated probabilities.  

Before insurance companies can manage their risks efficiently, they first need to know 

the pattern of their losses. Consequently, they collect huge amounts of data (there are insurance 

pools from which data could be bought for commonly occurring risks, like automobile 
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accidents), and apply statistical analysis to that data. In the following chapter, I focus on the 

probability distributions that are generally applied in the field of insurance. 
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Chapter 2: Applications of Statistical Distributions in Insurance 

          We will now study the application of statistics in general insurance. These statistical 

methods will aid in assessing premium rates, the amount of risk retained by insurance 

companies, claims that are outstanding and claims that have been filed. It should be highlighted 

once again that the successful operations by the insurance industry has been a result of these 

kinds of statistical data.  

          In insurance the frequency and severity analysis is of paramount importance because it 

helps in pricing and product development. Frequency of claims is the number of claims filed per 

year (period) by policy holders whilst severity of claims is the dollar amount of claims on a per 

claim basis filed in the given year (period). Cizek et al (2005) explains that a typical model for 

insurance risk has two main components: one characterizing the frequency (or incidence) of 

events and another describing the severity (or size or amount) of loss resulting from the 

occurrence of an event. The unexpected increase in the severity and frequency of general 

insurance claims over the last decade has made the development of useful models for the claims 

process even more important. Property damage claim frequency, which is the number of property 

damage claims per 100 insured vehicles, decreased 11 percent whilst property damage claims 

severity increased 18 percent. Similarly, Baranoff (2008) observed that bodily injury claim 

frequency decreased 19 percent whilst bodily injury claim severity increased 22 percent during 

this period of time.  

A way of improving usefulness of risk management as a result of the occurrence of an 

event and its associated probabilities involves the study of statistical distributions. 
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          Both frequency and severity can be studied using statistical distributions. The insurance 

industry is based on the principle of pooling. Insurance process involves a combination of risk 

pooling and risk transfer (from the owner of the risk to a third, non-related party) which reduces 

risks physically and monetarily (Baranoff, 2008). We regard insurance as a social device in 

which a group of individuals called insureds transfer risk to another party called an insurer in 

such a way that the insurer combines or pools all the risk exposures together. Pooling the 

exposures together permits more accurate statistical prediction of future losses (Baranoff, 2008). 

Pooling reduces the risk because if accurate estimates of the probability distributions are to be 

made prior to actually providing insurance, then a large number of cases must be considered. If 

statistical methods are used to determine, for example, the probability of death at age twenty-

five, a large number of cases must be observed in order to come up with a reliable estimate.  

In this chapter the Normal, Log-normal, Pareto, Gamma, standard Beta, Weibull, Frechet, 

Gumbel Poisson, binomial and negative binomial are examined. The importance of these 

distributions in general insurance work is also emphasized. 

We will now look at some of the statistical distributions that are used to model the 

severity and frequency of general insurance claims. The Normal, Log-normal, Pareto and 

Gamma, Standard Beta (2- parameter) Weibull, Frechet and Gumbel are continuous distributions 

used to model the severity of claims. On the other hand Poisson, Binomial and Negative 

binomial are discrete distributions used to model the frequency of claims. Finally I will also 

discuss some extreme value distributions. There are a host of other distributions that are 

employed as well, but the ones named above are the most common.  
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2.1 Continuous Distributions 

2.1.1 Normal Distribution 

The normal distribution is continuous and has 2 parameters, µ and σ. They determine the 

location and scale, respectively. The importance of the normal distribution in the statistical 

analysis of insurance is paramount. The probability density function is bell-shaped and 

symmetrical about the mean. Its formula is given by: 

     

2

2
( )

2 (2 )1
( | , ) e

2

x

f x


 
 


 ,   x    ,       , 0 .        (Casella et al 2002)  

Its mean and variance are given by ( )EX E Z EZ          and VarX 2  

respectively, where x represent losses or claims.  

Figure 2.1. The probability-density function of the normal distribution with  =0 and different   values.                   
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Although the range of a normal random variable x is from -∞ to ∞, the probability that x takes 

very small or very large values is small. The probability that a normal random variable X with 

mean µ and standard deviation σ lies between two values a and b is  
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2

1 1 ( )
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2(2 )

b

a

x
P a X b dx


 

           
    

It is not possible to express this integral (area) in terms of explicit mathematical functions. The 

random variable X is therefore transformed into a variable Z having a mean of 0 and standard 

deviation of 1. The transformation is 

                                        
X

Z





  

When this transformation is made, X is said to be standardized. It can be shown that if X is 

normally distributed Z is also normally distributed. 

2.1.2 Log-normal Distribution 

The second distribution to consider for severity of losses is the log-normal distribution. It 

is normally used to determine the claim size distribution as it is positively skewed and the 

random variable does not take negative values, which is a feature of claim size distribution. The 

lognormal is skewed to the right, and is often useful in modeling claim size (Boland 2007). It has 

2 parameters, mean µ which is the location parameter and standard deviation σ the scale 

parameter. A random variable X is said to have the log-normal distribution with parameters µ 

and σ if Y= ln X has the normal distribution with mean µ and standard deviation σ (Hossack et al 

1983). The probability density function of the log-normal distribution is given by 

2
2

2

1 1 (log
( | , ) exp

22

x
f x

x

 
 

  
  

 

)
0 x   ,     0,  .   (Casella et al 2002)   

The mean and variance is given by 
2

( )
2EX e


  and
22( ) 2VarX e e

2     . Again, x stands for 

loss or claim amount. 
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Figure 2.2. The log-normal probability-density function with  =0 and different values. 

      

2.1.3 Pareto Distribution 

Pareto distribution is positively skewed, heavy –tailed distribution which is used to model 

the severity of claims. It has two parameters, α, which is the shape parameter and β, the scale 

parameter. For the mean and variance to exist in Pareto distribution  must be greater than 1 and 

2 respectively. The random variable X is Pareto with (positive) parameters  and    if it has 

density function 

        
1

( | , )f x
x





   ,    a x   , 0  , 0  .                   (Casella et al 2002) 

The Pareto distribution is named after Vilfredo Pareto (1848-1923) who used it in modeling 

welfare economics. Today, it is commonly used to model income distribution in economics or 

claim-size distribution in insurance, due in large part to its extremely thick tail. Like the 

exponential family of random variables, the Pareto distributions have density and survival 

functions which are very tractable. Pareto random variables have some nice preservation 

properties. For example, if X ~Pareto ( , )  and k 0, then kX ~ Pareto       since 
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This property is useful in dealing with inflation in claims. 

The mean and variance of the Pareto distribution is given by
1

EX






, where 1  and  

2

2( 1) ( 2
VarX


 


  )

, where 2  . 

Figure 2.3. The Pareto probability-density function with different  and values. 
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2.1.4 Gamma Distribution 

 
The next distribution to discuss is the gamma distribution which is used in the study of 

claim size and in the analysis of heterogeneity of risk. It has two parameters, , which is the 

shape parameter and  , the scale parameter.  

The probability density function for gamma distribution is given by 
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                     11
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 



, 0 x    , , 0   .                   (Casella et al 2002) 

 

Г (α) is a number which depends on α. The gamma distribution is not symmetrical; instead it is 

positively skewed, but as it increases, the skewness decreases and the distribution becomes more 

symmetrical. The mean and variance are given by EX  andVarX 2 . 

Figure 2.4. Probability density-function of the Gamma distribution with different  and   values.   
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2.1.5 Standard Beta Distribution 

          The generalized two-parameter beta distribution (standard beta) with parameters and  is 

another frequently used distribution for a continuous random variable with interval . It is 

helpful for modeling proportions. Its probability density function is given by  

0 x 1

                              1 1( | , ) (1 )f x kx x     

, 0

                                                                             (a)                         

for , where0 x  1    . 

 

 

 

 

 



www.manaraa.com

17 
 
 
Figure 2.5. Probability density-function of the standard Beta distribution with different parameters values. 

   

It is important to know that , 0   determine the shape of the curve, and k is a scalar we need 

to make this a probability density function. K is given by 

                          
1

( , )
k

B  
                                                                                                          (b)  

where B is the beta function. 

Substituting equation into equation ( which is the density function will give us ( )b )a

                       11
( ) (1 )

( , )
f x x x

B


 
 1  …(c)                                              (Casella et al 2002)                         

for 0 1x  , , 0   , 

where
1

1 1

0

( ) ( )
( , ) (1 )

( )
B y y dy    

 
   

  
  . By substitution the probability density function 

of the standard beta ( , )  distribution becomes  
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 is the constant we need to make the curve whose shape is given by 

1(1 ) 1x x    a density function. The shape of the beta distribution curve is different depending 

on the values of  and  which makes the beta ( , )  a family of distributions. The uniform 

distribution has a relationship with the beta distribution where 1  and 1  . 

The mean and variance of the standard beta distribution is given by EX


 



and  

2( ) (
VarX

1)


   


  

. 

 

2.1.6 Weibull Distribution 

The random variable X with Weibull distribution has a probability density function given 

by 

                           1( , )
x

f x x e



  



   , 0 x    , 0  , 0  .                (Casella et al 2002)                        

It has two parameters , which is the location parameter and , the scale parameter. Kleiber and 

Kotz (2003) explains that the Weibull distribution has no doubt received maximum attention in 

the statistical and engineering literature of the last ten years and is still going strong. In 

economics it is probably less prominent, but D’Addario (1974) noticed its potentials for income 

data and Hogg and Klugman (1983) for insurance losses. A simple argument leading to a 

Weibull distribution as a distribution of fire loss amount was given by Ramachandran (1974). 
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 A fit to a small data set (35 observations) of hurricane losses was carried out using the 

Weibull distribution by Hogg and Klugman (1983) in the actuarial literature and the authors 

found that it performs about as well as the lognormal distribution. In the study employing 16 loss 

distributions in the Cummins et al. (1990), the Weibull distribution does not provide an adequate 

fit to the Cummins and Freifelder (1978) fire loss data. In particular the data appear to involve a 

model with heavier tails such as an inverse Weibull distribution. However, in practice, it is often 

found that the Weibull distribution frequently does significantly better than the more popular 

lognormal distribution.  

Figure 2.6. The probability density-function of the Weibull distribution with  =1.5 and  =1. 

   

Its mean and variance are given by 
1 1

(1 )EX 

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2.2 Discrete Distributions 

 We will now turn and look at some of the discrete distributions that are used to model the 

frequency of claims. These distributions include Poisson, Binomial, and Negative Binomial. 

2.2.1 Poisson Distribution 

The Poisson distribution is commonly employed for analyzing the incidence of claims 

and is also a non-negative, integer-valued distribution which plays an important role in statistical 

theory. The Poisson distribution which is a generally applied discrete distribution can be used as 

a model for a number of diverse types of experiments. If we model an event in which we are 

waiting for an occurrence such as waiting for a bus, then the number of occurrences in a given 

time interval can at times be modeled by the Poisson distribution. The Poison distribution was 

built on one of the theories that, for small time intervals, the probability of an arrival is 

proportional to the length of waiting time. It is therefore meaningful to think that the longer we 

wait, the more likely it is that a customer will board the bus. A random variable X, taking values 

in the nonnegative integers, has a Poisson ( ) distribution if 

                      ( / )
!

xe
P X x

x




     , where x = 0, 1, 2…; 0                 (Casella et al 2002) 

The parameter is both the mean and the variance of the distribution where is a positive real 

number which is equal to the expected number of occurrences that occur during the given 

interval and x the number of claims. 
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Figure 2.7. The probability-mass function of the Poisson distribution with means 5 and 23 respectively. 
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Its mean and variance are given by EX  andVarX  . 

2.2.2 Binomial Distribution 

The binomial distribution is also useful for analyzing claim frequencies and has                  

n and p as its parameters, where n (positive integer) is the number of trials and p is the 

probability of success. A discrete random variable X has a binomial distribution if its probability 

mass function is of the form 

         
   !

( , ) 1
! !

n xxn
P X x n p p p

x n x
   


 ;  0,1,2,...,x n ;   0 1p       

(Casella et al 2002)
 

The binomial distribution, one of the more useful discrete distributions, is essentially a Bernoulli 

trial, repeated n times. 
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Figure 2.8. The probability-mass function of the binomial distribution with n=10, p= 0.2 and n=20, p=0.8 

respectively. 
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The mean and the variance is given by EX np  and (1 )VarX np p  . 

2.2.3 Negative Binomial Distribution 

The number of trials up to and including the rth success in a sequence of independent 

Bernoulli trials with a constant success probability p has negative binomial distribution with 

parameters p and r. Let the random variable X denote the trial at which the rth success occurs, 

where r is a fixed integer. The probability mass function 

 The probability mass function 

                    
1

, 1 xrr x
P X x r p p p

x

  
    

 
 ;   0,1,.....;x   0 1p      

(Casella et al 2002)
 

And we say that X has a negative binomial (r, p) distribution with an expected value and variance 

(1 )r p
EX

p


  and

2

(1 )r p
VarX . Again x refers to the frequency of losses. 

p



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Figure 2.9. The negative binomial probability-mass function with different r and p values . 
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The most important application of the negative binomial distribution, as far as general insurance 

applications are concerned, is in connection with the distribution of claim frequencies when the 

risks are not homogenous.  

 
2.3 Extreme Value Distributions (EVD) 
 

Extreme value distribution is a family of continuous probability distributions which is 

developed within extreme value theory to combine the Gumbel, Frechet and Weibull families 

also known as Types I, II and III extreme value distributions. Extreme value theory plays an 

increasingly important role in stochastic modeling in insurance and finance. It can be used in 

applications involving natural phenomena such as rainfall, floods, wind gust, air pollution, 

corrosion, etc. Extreme value theory deals with the behavior of the maximum and minimum of 

independent identically distributed random variables whereby their properties are determined by 

the upper and lower tails of the underlying distribution.  

Fisher and Tippett (1928) published results of an independent inquiry into extreme value 

distributions. Since 1920’s there have been a number of papers dealing with practical 
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applications of extreme value statistics in distributions of human lifetimes [Gumbel (1937)], 

strength of materials [Weibull (1939)], flood analysis [Gumbel (1941, 1944, 1945)]  to mention a 

few examples. With regards to application, Gumbel made several important contributions to the 

extreme value analysis. Gumbel was the first to call the attention of engineers and statisticians to 

possible applications of the formal extreme value theory to certain distributions which had 

previously been treated otherwise. Another important early publication related to extreme value 

analysis of the distribution of feasible strengths of rubbers is due to S. Kase (1953). There are 

several books that deal with extreme value distributions and their statistical applications. Castillo 

(1988) has successfully presented many statistically applications on extreme value theory with 

emphasis on engineering problems. Beirlant, Teugels and Vynekier (1996) provided a clear 

practical analysis of extreme values with emphasis on actuarial applications. 

2.3.1 Types of Extreme Value Distributions 

There are three types of extreme value distributions namely: 

(1) Gumbel-type distribution (EVD type I): 

                                        
( )

Pr[ ] exp[ ].
x

X x e



                                                                (1.1) 

(2) Frechet-type distribution (EVD type II): 

                                         Pr[ ] exp ( ) , .
x

X x x 


     
 

                                         (1.2) 
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Figure 2.10. The probability‐density function of the Frechet distribution with µ=2 and σ=1.     

     

(3) Weibull-type distribution (EVD type III): Refer to Figure 2.5 for graph 

                                      Pr[ ] exp ( ) , .
x

X x x 

     

 
                                      (1.3) 

where , ( 0)  and ( 0)  are parameters. It can be observed that Frechet and Weibull 

distributions are related by a simple change of sign. Type II and III distributions can be 

transformed to type I distributions by the simple transformations 

                                       log( )Z X   , log( )Z X   , 

respectively. The reason why extreme value is attached to these distributions is because they can 

be obtained as limiting distributions of the greatest value among independent random 

variables each having the same continuous distribution.  

(n ) n

The three types of distributions in (1.1)-(1.3) may all be represented as members of a single 

family of generalized distributions with cumulative distribution function 
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1

Pr[ ] [1 ( )] ,
x

X x 



   1 ( ) 0,

x 



 ,     0.                   (1.4) 

The generalized extreme value distribution (GEV) has three parameters (Reiss and Thomas, 

2000): the location parameter , the scale parameter  , and the shape parameter , which reflects 

the fatness of tails of the distribution (the higher value of this parameter, the fatter tails). When 

0,  equation (1.4) is equal to that of (1.2). When 0,  equation (1.4) is equivalent to that of 

(1.3). Lastly, when    or , equation (1.4) turn out to be the type 1 extreme value 

distribution in (1.1). That is why the distribution function in (1.4) is referred to as the generalized 

extreme value distribution and is also at times called the von Mises type extreme value 

distribution or the von Mises-Jenkinson type distribution. 



 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

27 
 
 

 

 

Chapter 3: Estimation 

3.1 Maximum Likelihood Estimate 
 
         One of the procedures for calculating a point estimator of a parameter is through the 

method of maximum likelihood, which was developed by a famous British statistician Sir R.A. 

Fisher in 1920. Salkind (2007) states that maximum likelihood estimate (MLE) of a parameter is 

the value that gives the observed data the highest probability possible. 

 We will consider X to be a random variable with probability distribution ( : )f x  , where 

  is a single unknown parameter. If we let 1 2, ,..., nx x x be the observed values in a random sample 

of size n, then the likelihood function of the sample will be given by 

  L ( ) = 1 2( ; ). ( ; )... ( ; )nf x f x f x   . 

This means that the likelihood function now becomes a function of the unknown parameter, 

which is  in this case. The ML estimator of   is the value of   that maximizes the likelihood 

function ( )L   (Montgomery and Runger 2003). When x is discrete the likelihood function of the 

sample ( )L  will be the probability 

    1 1 2 2( , ,..., )n nP X x X x X x  

which will also mean that ( )L   will be the probability of getting the values of the sample 

1 2, ,..., nx x x . 

In the case where the random variable is discrete, the maximum likelihood estimator is 

one that makes best use of the probability of occurrence of the sample values. That makes the 

interpretation of the likelihood function clear in the scenario where the random variable is 
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discrete. The method of maximum likelihood provides estimators which are usually quite 

satisfactory (Hossack et al 1983). MLE can be biased depending on the sample size. 

 Where the sample size is small, the bias of the maximum likelihood estimators can be 

regarded as significant. The principle of MLE possesses certain characteristics when the sample 

size n is large and if 


is the estimator of the parameter . These characteristics include: 

(1) The ML estimator  should be unbiased, so that its expectation is equal to the true value of 

the parameter. Thus, the estimate obtained should be equal to the underlying parameter and 

should not provide estimates which are too high or too low. 

(2) The ML estimator 


 has an approximate normal distribution. 

(3) The MLE is asymptotically efficient for large samples under quite general conditions. That 

is, the variance of the estimator should be minimal.  

Please note that the distributions fitted in this thesis for the flood loss data are fitted using 

the maximum likelihood estimation technique. 

The maximum likelihood estimator of the Poisson claim frequency rate is merely the 

mean number of claims per policy per annum. 

 Though the method of maximum likelihood is the most frequently used, there are other 

methods of obtaining estimators such as the method of moments and least squares. Out of the 

three standard methods, the method of moments is perhaps the most readily understood and 

easiest to compute. Both the method of maximum likelihood and the method of moments can 

produce unbiased point estimators. 

3.2 Method of Moments 

 The main idea behind the method of moments is to equate the population moments which 

are given in terms of expected values, to the corresponding sample moments. For example the 
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point estimate of the mean from the method of moments is found by setting the sample mean 

equal to the population mean and so on.  

Suppose 1 2, ,..., nX X X

th

is a random sample from the probability distribution f(x). In this 

case f(x) can either be a discrete probability mass function or a continuous probability density 

function. The population moment is given by where k =1,2,.... The corresponding 

sample moment is 

K ( )kE X

thK
1

1
( )

n
k
i

i

X
n 
 where k =1, 2.... To show this technique, the first population 

moment is ( )E X  , and the first sample moment is
1

1
( )

n

i
i

X X
n 

 . If we equate the population 

and the sample moments, X


 . This makes the sample mean become the moment estimator 

of the population mean. In general, the population moments will be a function of the unknown 

parameters of the distribution, say 1 2, ,... m   . 

 Let 1 2, ,..., nX X X be a random sample from either a probability mass function or a 

probability density function where 1 2, ,... m   are m unknown parameters. To find the moment 

estimators 1 2, ,..., m  
  

, we will equate the first m population moments to the first m sample 

moments and solve the resulting equations for the unknown parameters. Hossack et al (1983) 

explains that in the case of a two-parameter distribution, for example, we compute the first two 

moments of the sample and equate these to the corresponding theoretical moments of the 

distribution. We will consider an example of this technique. 

Example: Table 3.1 summarizes the claim sizes of a sample of 100 claims on an insurance 

company. Assuming that the log-normal is a suitable model, I will obtain estimates of its 

parameters,  and , and estimate the probability that a particular claim exceeds $4000. 
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Table 3.1: Claim size distribution 

Claim size ($)       Number of Claims 

0-400         2 

400-800        24 

800-1200        32 

1200-1600        21 

1600-2000        10  

2000-2400        6 

2400-2800        3 

2800-3200        1 

3200-3600        1 

Over 3600        0 

    Total                  100 

 

Assuming that the number of claims of Table 3.1 refer to claims with sizes equal to the mid-point 

of the respective claim size interval, we obtain the mean claim size of the observed distribution 

as follows:  

  Mean claim size = 
2 24

$(200 600 ... 3400 )
100 100 100

$1216

     



1
 

 

The variance of the observed claim size distribution is calculated as follows:  

 Variance = 
2 2 22 24 1

(200 600 ... 3400 ) 1216
100 100 100

362,944

      



2
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The mean and variance of the log-normal distribution are given by  

21
exp( );

2
Mean     and Vari 2 2exp(2 )[exp( ) 1]ance      .  

To estimate  and 2 we therefore equate the above mean and variance to the observed values 

1216 and 362,944 respectively. Thus,  

21
exp( ) 1216

2
  

 
and    2 2exp(2 )[exp( ) 1] 362,944    

Squaring the first of these equations and dividing the second equation by this square we obtain 

           2exp( ) 1 0.2455,  

From which 

                 0.469,   

and so 

                  6.993   

The probability that a particular claim X exceeds is equal to the probability that 

exceeds 8.294. But 

$4000

lnX ln X is normally distributed with mean  and standard deviation , and 

we have estimated  to be 6.993 and  to be 0.469. An estimate of the required probability is, 

therefore,   

                  
8.294 6.993

1 ( ) 1 (2.77) 0.00280
0.469


     

In other words, we estimate that about 3 claims in 1000 will exceed $4000.  

While the above examples illustrate the application of statistical distributions in the area 

of risk and insurance, it is another statistical task to determine whether a given distribution fits 

the given insurance loss data or not. We will tackle this question in the next chapter. 
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Chapter 4: Fitting Loss Distribution Using Different Test Statistics 

It can be both exciting and a demanding exercise to fit a probability distribution to claim 

data. Boland (2007) explains that when one is trying to fit a distribution to claim data, it is well 

worth remembering the famous quote of George Box who states that all models are wrong, some 

models are useful. In the preceding section we have talked about the method of maximum 

likelihood (ML), and the method of moments (MM) in estimating parameters of typical loss                        

distributions. But, how do we make a decision on the particular type of distribution, the method 

of estimation, and ensure the resulting distribution provides a good fit?  Exploratory Data 

Analysis (EDA) techniques such as histograms, qq plots and box-plots can often be useful in 

investigating the suitability of certain families of distribution (Boland 2007). 

Because these techniques in examining the fit is tentative, one would have to make use of 

one or more of the usual typical methods to test fitness such as the Kolmogorov – Smirnoff (K- 

S), Anderson – Darling (A – D), or chi-square goodness of fit tests. The K – S and A – D tests 

are used to test continuous distributions, while the chi – square goodness of fit test is used to test 

both continuous and discrete distributions (Boland 2007). 

 

4.1 Kolmogorov – Smirnov test 

 The Kolmogorov-Smirnov statistic is a method used to test if there is any difference 

between the cumulative distribution function of the sample data and the cumulative probability 

distribution function. The test is based on the maximum absolute difference between the 

cumulative distribution functions of the samples from each population.  
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  The Kolmogorov- Smirnov (K-S) test helps test the null hypothesis  that a sample x 

comes from a probability distribution with cumulative distribution function (cdf) . The K – S 

two-sided test rejects the hypothesis if the maximum absolute difference between and 

the empirical cumulative distribution function (ecdf) 

0H

nd

0F

0H 0F

nF


is large. The K – S test statistic is given 

by: 

                                    supn xd   0( ) ( )nF x F x


                                        (Boland 2007) 

nF is defined as 

                                        
1

1
( )

i

n

n X
i

xF x I
n 



    

for  independent and identically distributed observationsn iX , where 
iX xI   is the indicator 

function, equal to 1 if iX x

nd

and equal to 0 otherwise. The K – S statistic is nonparametric and 

the null distribution of is the same for all continuous distribution functions . This makes it 

possible using one set of critical values as far as this test statistic is concerned. However, a test 

has its flaws, and in particular, is frequently not good in detecting tail discrepancies and 

sometimes the upper tail of a loss distribution is usually of considerable interest. The K – S is 

constant under transformations where one can test that a data set x comes from a distribution 

with cdf  or whether the transformed sample data comes from, say, another distribution. 

0F

0F 0 ( )F x

 

4.2 Anderson-Darling test 

The Anderson-Darling (A-D) test is also used to test whether a given set of data fits a 

specified probability distribution. Apart from using the test to see if a data fits the distribution, it 

can also be used in estimating parameters using the minimum distance estimation approach. The 
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A-D test is an adjustment of the Kolmogorov-Smirnoff test which takes into consideration the 

tails of the distribution. Because of the sensitive nature of the test, it has the disadvantage that it 

is not a nonparametric test, and before you can get the critical values for the test statistic, 

calculations will have to be made for each distribution being considered. There are many 

software packages that tabulate critical values for the A-D test statistic when we want to find out 

if a particular distribution such as normal, lognormal, gamma or weibull fits the data. The A-D 

test statistic 2
nA for a sample x of size from the null distribution function and the 

corresponding density function 

n 0F

0f is given by 

                                                

2
02

0
0 0

[ ( ) ( )]
( ) .

( )[1 ( )]
n

n

F x F x
A n f x dx

F x F x










                             (Boland 2007)

 

nF


(x) is a step function with jumps at the order statistics (1) (2) ( )... ,nx x x   and also for 

computational purposes the following expression will be useful: 

                       2
0 ( ) 0 ( 1 )

1

2 1
{log[ ( )] log[1 ( )]}

n

n i
i

i
n iA F x F x n

n  



      

 

4.3 Chi-square goodness-of-fit tests 

The chi-square goodness-of-fit test is mostly used to test how well a particular 

distribution fits a given data set, be it discrete or continuous. The test has an assumption of being 

asymptotic where the test of fit for a specified distribution is basically condensed to a 

multinomial setting. Boland (2007) explains that when testing the fit of a continuous distribution, 

the data is usually first binned (or grouped) into k intervals of the form for 

although this clearly involves losing information in the sample. We then calculate the 

1[ , ),i i iI c c 

1,..., ,i  k
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number of expected observations  based on a grouped data and compare it with the actual 

observed numbers  for each interval. We then measure the fit of the hypothesized null 

distribution which is obtained from the test statistic: 

iE

iO

                                                           
2

2

1

( )k
i i

i

O E

E
 

  

This also compares observed and expected values. If the value of the chi-square test statistic is 

large, we will reject the null hypothesis being considered since it signifies a lack of fit between 

the observed and expected values. We would reject the hypothesis that the distribution of the 

population is the hypothesized distribution if the calculated value of the test statistic 2 2
, 1k p     

(Montgomery et al 2003). The null hypothesis usually is the population that follows the 

hypothesized distribution and 2 has, approximately, a chi-square distribution with k-p-1 degrees 

of freedom, where p is equal to the number of parameters of the hypothesized distribution which 

is calculated by sample statistics. If we have to estimate the parameters of a grouped or 

ungrouped data, then the number of degrees of freedom will largely depend on the method of 

estimation. 
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Chapter 5: Distribution Fitting to Flood Losses – Related Aspects 

5.1 How to Measure Spatial Association and Correlation 

Geographic information system (GIS) has brought about new method of exploratory data 

analysis that center on spatial data. A GIS is a collection of computer software tools that 

facilitate, through georeferencing, the integration of spatial, nonspatial, qualitative, and 

quantitative data into a database that can be managed under one system environment (Burrough 

1986). Spatial data also known as geospatial data or geographic information is the data or 

information that identifies the geographic location of features and boundaries on Earth, such as 

natural or constructed features, oceans and more. This is why it is important to have a more 

formal way of assessing whether observations are spatially clustered or interrelated across some 

forms of ties between observations. This Cressie (1993) explains that data close together in time 

or space are likely to be correlated and has been used successfully by statisticians to model 

physical and social phenomena. In the case of this study, discovering such associations, however, 

will mean that we have some idea about which States are likely to be connected to one another. 

 Nonetheless for many purposes we try to find how observations are connected. Graphs 

and matrices are used to represent connectivities between observations. For example if we define 

a binary matrix C  that specifies how individual observations are connected, then we will have an 

entry if two observations i and1ijC  j are regarded as connected. If they are not, then 0ijC  .

 Spatial association for example, in the case of measures of democracy would mean how 

close countries were to one another in terms of their spatial measurement and whether there was 

a correlation existing among these countries. Gleditsch and Ward (2008) explain that the first 
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task in formally assessing such correlations is to specify the interdependencies among data. This 

will call for developing a list of which observations are connected to one another. Another way 

to establish connectivity is by the physical distance, say the distance between States of the 

United States of America and also specifying that States are neighbors if they are adjacent to one 

another. Gleditsch and ward (2008) developed a database of the minimum distances among all 

countries in the world.  

We will now look at tables showing the adjacency matrix format and the connections 

among States. 

Table 5.1: Adjacent and Non-Adjacent Matrix Format 

             Alabama Delaware Florida  Georgia  Maryland  S.Carolina  Tennessee  Virginia 

Alabama        0             0            1             1              0                0               1               0                     

Delaware       0             0            0             0              1                0               0               0             

Florida           1             0            0             1              0                0               0               0   

Georgia          1            0            1             0               0                1               1               0   

Maryland       0             1            0             0               0                0               0              1  

S. Carolina     0             0           0              1               0                0               0              0  

Tennessee      1             0           0              1               0                 0              0              0   

Virginia          0             0           0              0               1                0               1             0  

Note: A connection is present if States are adjacent to one another.                                                                        

 

Table 5.2: Adjacency Matrix for a Subset of United States of America  

 

States                                                     Adjacency 

Alabama                                                 Florida, Georgia, Tennessee                           

Delaware                                                Maryland 

Florida                                                    Alabama, Georgia 

Georgia                                                   Alabama, Florida, South Carolina, Tennessee 

Maryland                                                Delaware, Virginia 
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South Carolina                                       Georgia 

Tennessee                                               Georgia 

Virginia                                                   Maryland, Tennessee  

 A subset of the United States is shown in Table 5.1 which demonstrates the 

corresponding binary matrix C of these connections. This will help us test if the average 

correlations between losses of adjacent States are different from the average correlations of 

losses between non-adjacent States. Table 5.2 on the other hand represents a subset of adjacent 

States as a list in the United States. In dealing with small subsets, it is much easier to derive 

spatial characteristics and document them as lists of connections. A matrix representation also 

helps in describing certain variables or measures reflecting spatial structures and variations. One 

way to do this is to find out whether two connected observations and i j are alike to one another 

– that is to establish whether high or low values for i tend to go together with high or low values 

for j . Since i is most of the time linked to many observations, we will not have spatial 

association unless it looks the same as its neighbors. Once established, we try to find out how 

these adjacencies should be handled in the analysis itself. The question we try to ask ourselves is 

whether to give equal weights to adjacent States or weigh some differently according to the 

measure of their size or importance. To put together information regarding adjacent States, we 

generally assume that all neighbors have equal weight which is proportional to 1 over the total 

number of connectivities. This notwithstanding, there might be other weighting schemes by 

researchers provided it makes sense in the context of their specific research questions. If we 

consider regression models with a row-normalized matrix, the sum of all adjacent weights add to 

1. For normalization to make sense in a specific application, it will depend on the problem under 

discussion. Murdoch et al. (1997), for example, are interested in how a country’s emissions of 

pollutants are influenced by depositions from other countries. What is important is the total 
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amount of emitted pollutants and therefore normalizing the adjacency matrix by the number of 

adjacent countries is perhaps not the right thing to do.      

                 Testing for spatial dependence and correlation can be done using Moran’s I  statistic 

which Moran (1950a &1950b) explains is the linear association between a value and a weighted 

average of its neighbors, a global correlation of the values of an observation with those of its 

neighbors. Moran (1950a) proposed a test of spatial dependence between sites. The generalized 

Moran’s I is given by a weighted, scaled cross-product: 

                                          
2

( )(
,

( ) (

ij i ji j i

ij ii j i i

n w y Y y
I

w y Y




 



 
  

)

)

Y
 

where  denotes the elements of the row standardized weights matrix W and y is the variable of 

concern. 

w

I can be considered normal with mean equal to 1/ ( 1)n  . The variance of Moran’s 

I is given by 

  var ( )I  = 

2 2 2

2 2

1
( 1) ( ) ( 1) ( ) 2( )

2
( 1)( 1) ( )

ij ji kj ik iji j k j i i j

iji j

n n w w n n w w w

n n w

 



     

 

   


2
      

If we standardize the variable of concern as  Moran’s ,iz I is simply 

                                                      = I 1

2 ij i j
ij

c z z         i j  . 

 I undertake a bivariate correlation analysis of flood losses and find that maximum 

and minimum correlations amongst adjacent States are 0.990 (between Pennsylvania and New 

York) and -0.123 (between Arizona and Nevada); and 0.986 (between Pennsylvania and New 

Mexico) and -0.189 (between Florida and Louisiana) for non-adjacent States. Below is the 

summary statistics on correlation as shown in Table 5.3. 
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Table 5.3: Summary statistics on correlation 
                                          Mean       Median       Minimum        Maximum       Standard Deviation      
Adjacent States                    0.215       0.0896         -0.123              0.990               0.288 
 
Non-Adjacent States            0.039       -0.0293         -0.189              0.986               0.177    
 
 
5.2 Consumer Price Index (CPI) Inflation Calculator 

 
This is an inflation calculator used to adjust the cost from one year to another. The value 

of the index has been calculated every year since 1913 through to 2009. The inflation calculator 

depends on the average inflation index during the calendar year. The inflation calculator is able 

to calculate the rate of inflation from and to any of the range of years as stated above. The 

relative value in prices of all goods and services purchased for consumption by urban households 

is termed the CPI.  

The consumer price index which is also called an inflation indicator is calculated by the 

Bureau of Labor Statistics (BLS). The CPI which is published every month is what the United 

States BLS uses to indicate the rate of inflation. Though very simple in calculation, it serves a 

very important purpose. The difference in comparing the prices of everyday goods from one 

month to the other represents the CPI. If the CPI number increases extremely, then this signifies 

that cost of living is high which will mean there is inflation. Inflation causes the Federal Reserve 

to take suitable measures to control it and has also helped to decide on the changes that need to 

be made on interest rates.  

For the sake of this study, the CPI calculator is utilized to convert flood losses in norminal terms 

into flood losses in real terms.  
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Chapter 6: Fitting a Distribution to Flood Loss Data 

6.1 Identifying the distribution that best fits aggregate loss data 

In estimating the parameters of a number of possible probability distributions, we try to 

decide which, if any, gives the best representation of our data and to find out which distribution 

best fits a particular data. Even though eleven different types of distributions are mentioned, I 

will use seven to fit the flood loss data of the 50 States of the United States. They are the 

standard Beta, Frechet, Gamma, Gumbel, Lognormal, Normal, and Weibull distributions. A 

goodness-of-fit test based on the linearity of the probability plot (Rice 2007) is shown as well as 

a formal statistical test of distribution fitting. 

 

6.2 Probability Plot 

Chambers (1983) describes a probability plot as a graphical technique for assessing 

whether or not a data set follows a given distribution such as the normal or Weibull. It is a plot of 

the quantiles (or percentages) of points below a given value of the sample data set against the 

quantiles of the postulated probability distribution (Lewis 2004). A straight line which is also 

called the reference is also plotted. If the plotted points fall along the reference line, then it 

means that the sample comes from the proposed probability distribution. Departures of the 

sample from the reference line would mean departures from the postulated distribution. If the 

data points do not lie next to the reference line, then a different probability model will have to be 

chosen.  
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6.3 Formal Test Statistics 

Various test statistics can be used to assess the fit of a postulated severity of loss 

probability model to empirical data. Even though three test statistics are mention in this chapter, 

the Kolmogorov-Smirnov and Anderson-Darling goodness of fit tests will be employed. Flood 

loss data for all 51 States which is collected from the Federal Emergency Management Agency 

(FEMA) is fitted and analyzed. There are samples of 46 observations on the severity of flood 

loss random variable X  from year 1955 to 2000. Years with no flood loss is represented with a 

small amount, which is 0.1(in millions). In addition we will be interested in testing : Samples 

come from the postulated probability distribution, as against : Samples do not come from the 

postulated probability distribution. 

0H

1H

 

6.4 Kolmogorov-Smirnov goodness of fit test 

The Kolmogorov-Smirnov (K-S) test statistic is estimated as the largest absolute 

difference between the cumulative distribution function of the sample data and the cumulative 

probability distribution function of the proposed probability density function over the range of 

the random variable: 

                                     max ( ) ( )NT S x F  x                                                              

for all x , where is the empirical cumulative distribution function of the sample data and ( )NS x

( )F x is the cumulative probability distribution function of the hypothesized probability density 

function (Lewis 2004). For the K-S test it can be shown that the value of the sample cumulative 

distribution function is asymptotically normally distributed. This makes the test distribution free 

which means that the critical values do not depend on the specific probability distribution been 

tested. For every specified distribution for the null hypothesis, the same set of critical values can 
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be used. The K-S test statistic critical value is approximately 1.224 / N  or 

1.224 / 46 0.1805  for a 10%  level of significance, where is the total number of 

observations. For a 5% level of significance it is approximately 

N

1.358 / N or 0.2002, and the 

critical value for a 1% level of significance is approximately 1.628 / N or 0.2400. 

 
 
6.5 Modeling Severity of Flood Losses 
 
Alabama 
 

A distribution is fitted to the flood loss data of the State of Alabama from 1955 to 2000.  
 
Table 6.1 shows the statistical characteristics of flood losses (measured in year 2000 dollars) of 

the State of Alabama. Figure 6.2 illustrates a fitted Weibull distribution against a histogram of 

the actual data and Table 6.2 presents the K-S goodness-of-fit and the corresponding parameters 

of each distribution. 

 
Table 6.1 Statistical Characteristics of Flood Losses 
 
Mean                                             $68,629,000.00 
 
Median                                          $16,305,000.00 
 
Standard deviation                      $163,210,000.00 
 
Skewness                                                        4.6 
 
Kurtosis                                                         23.59 
 

The claim size distributions, especially describing property losses, are usually heavy-

tailed. In spite of the fact that one may always work with empirical distribution function derived 

from a data set of claims, there is always a natural desire to fit a probability distribution with 

reasonably good mathematical properties to such a data set. In any attempt to do so, one initially 
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performs some exploratory analysis of the data and makes use of descriptive statistics (such as 

the mean, median, standard deviation, skewness, and kurtosis) and plots. All distributions are 

fitted using EasyFit 5.4 Professional which undertakes Maximum Likelihood Estimation (MLE). 

We then try to fit one of the classic parametric distributions using maximum likelihood method 

to estimate parameters. Various test (for example, the Kolmogorov-Smirnov, Anderson-Darling) 

may be used to assess the fit of a proposed model. 

First, the mean of the sample data is significantly larger than that of the median, which is 

reflected in a coefficient of skewness equal to 4.63. Second, the losses are very fat tailed, with an 

excess kurtosis of 23.   

  

Table 6.2 Goodness-of-fit and distribution parameters (Alabama) using K-S statistic. 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K- S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

Standard        
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.33426 

 
 5 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.10487  α2= 1.5658    

 
Frechet 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.22004 

 
  3 

Reject H0 at 
α=0.05 & 0.1& fail 
to reject H0 at 
α=0.01 



=0.42591  =2.1108 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.25086 

 
  4 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.17681   β=388.15 

 
Gumbel 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.38212 

 
  7 

Reject H0 at 
α=0.01, 0.05 &0.1 

=127.26  =-4.8256 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.16234 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.5692      μ=2.1364 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.33729 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=163.21      μ=68.629 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.09788 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.46117     β=28.853 

***/**/* represent the significance levels at 1%, 5%, and 10% 
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Table 6.3 Goodness-of-fit and Distribution Parameters (Alabama) using A-D statistic. 

***/**/* represent the significance levels at 1%, 5%, and 10% 

 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson
 Darling  

 
Rank

 
Reject/Accept 

 
Parameters 

Standard 
Beta 

 
3.9074 

 
2.5018 

 
1.9286 

 
6.7081 

 
5 

Reject Ho α= 
.01, .05 & .1 

 
α1= 0.10487  α2= 1.5658     

 
Frechet 

*** 
3.9074 

** 
2.5018 

 
1.9286 

 
2.4662 

 
3 

Reject Ho at  
  α=0.1 

 
=0.42591  =2.1108 

 
Gamma  

*** 
3.9074 

 
2.5018 

 
1.9286 

 
3.3092 

 
4 

Reject Ho at  
α =0.1  

 
α= 0.17681   β=388.15 

 
Gumbel  

 
3.9074 

 
2.5018 

 
1.9286 

 
7.2308 

 
6 

Reject Ho α= 
.01, .05 & .1 

 
=127.26  =-4.8256 

 
Lognormal 

*** 
3.9074 

** 
2.5018 

* 
1.9286 

 
1.0312 

 
2 

Fail to reject 
Ho at α= .01, 
.05 & .1 

 
σ=2.5692      μ=2.1364 

 
Normal  

 
3.9074 

 
2.5018 

 
1.9286 

 
8.3944 

 
7 

Reject H0 at 
α=0.01 0.05 
&0.1  
 

 
 
σ=163.21      μ=68.629 

 
Weibull 

*** 
3.9074 

** 
2.5018 

* 
1.9286 

 
0.44237 

 
1 

Fail to reject 
H0 at  α=0.01 
0.05 &0.1 

 
α=0.46117     β=28.853 

 

Figure 6.1 Weibull probability plot of flood losses for Alabama. 
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Figure 6.2 Fitted Weibull distribution and histogram for Alabama.  

 

 
The Weibull distribution was fitted to the flood loss data as shown in Figure 6.2. The standard 

Beta, Frechet, Gamma, Gumbel, Log-normal, Normal and Weibull were analyzed. This is 

because in the actuarial literature for describing such claims, continuous distributions are often 

proposed. The goodness-of-fit was checked with the help of the Kolmogorov-Smirnov and 

Anderson-Darling test statistic. In the case of the Kolmogorov-Smirnov, the test statistic was 

compared with the critical value of 0.2400, 0.2002 and 0.1805 with a corresponding 1%, 5% and 

10% level of significance. With a 1%, 5% and 10% level of significance the critical value of the 

Anderson-Darling test statistic was 3.9074, 2.5018 and 1.9286. The Weibull distribution with 

parameters α=0.46117 and β=28.853 was the best fit for both the Kolmogorov-Smirnov and 

Anderson-Darling test statistic as shown in Tables 6.2 and 6.3. The log-normal distribution with 

parameters σ=2.5692 and μ=2.1364 was the next best fit. We can therefore postulate that the data 

comes from a Weibull distribution and will therefore fail to reject H0 at  = 0.01, 0.05, and 0.1. 

This is confirmed in the probability plot of Figure 6.1 for which the Kolmogorov-Smirnov test 
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statistic is 0.09788. Table 6.2 appears to indicate that the Weibull distribution fits the data at 

least as well as the lognormal distribution. The Frechet distribution with parameters 

=0.42591 and =2.1108 fitted well in the case of the Anderson-Darling test statistic with  = 

0.01 and 0.05 but for that of the Kolmogorov-Smirnov it fitted with  = 0.01. This indicates that 

extreme value distributions be considered when fitting flood loss data.  

Similar statistical test was conducted for all the remaining 49 States (Alaska – Wyoming) and 

these can be found at appendix B.  

 

6.6 Applications of the GB2 Distribution in Modeling Insurance Loss Processes 

Having talked about the distributions commonly employed in the insurance industry, I 

will discuss the four parameter generalized beta distribution of the second kind (GB2), which can 

also be employed to model insurance data.  

One of the troubles associated with combined risk theory analysis is the calculation of the 

cumulative distribution of total annual aggregate losses, F(x) for the variable  

   
1

N

i

i

X S







  

Where both (number of claims) and N


S


 (the dollar amount of losses for claim) are random 

variables.   

thi

Trying to develop a method in the computation of F(x) has been a more complicated 

approach to the estimation of frequency ( N


) and severity ( S


) distributions. 

The calculation of F(x), using the traditional approach was to estimate one or two parameter 

distribution. Because insurance claims distributions are often heavy-tailed, restricting the set of 
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candidate distributions can also lead to serious underestimation of tail fractals, reinsurance 

premiums, and other variables (Cummins and Friefelder 1978).  

 Progress made in modern times has come a long way to open up a much wider range of 

probability distributions for use in modeling insurance claims processes. Hogg and Klugman 

(1983) discuss many alternative models for loss distributions as well as related issues of 

estimation and inference. Cummins et al (1978) suggest utilizing the generalized Beta as one of 

the distributions that is flexible enough to accommodate diverse loss distributions in insurance. 

Although not implemented in this report, I will discuss this below. 

McDonald (1984) considers generalizations of the beta distribution of the first type 

(Pearson type I) and of the second type (Pearson type VI) which will be denoted by GB1 and 

GB2, respectively. Venter (1983) introduced the GB2 in the actuarial literature as the 

transformed beta.  

The density function of the generalized beta four parameter distribution (GB2) is given 

by: 

                               GB2(x; a, b, p, q) =
 

1

( , )(1 )

ap

aap p q

a x
x

b B p q
b




,   x0 

where all four parameters a, b, p, q are positive. Here b is a scale and a, p, q are shape 

parameters. 

  The GB2 gives an extremely flexible functional form that can be used to model highly 

skewed loss distributions especially those seen in non-life insurance. We can make use of the 

GB2 family of distribution whether the data is untransformed or with natural logs. With data 

symbolized by extremely heavy trails, the log-GB2 may be better in some instances. The 

aggregate claims distribution model is based on the moments of a time series of observed total 
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losses. To obtain F (x), a simulation will have to be run from the underlying frequency and best- 

fitting severity distributions. 

 The shape and location of the density function is determined by the parameters in these 

distributions. The parameter b is a scale factor; b is also an upper or lower bound for GB1 

variables as the parameter a is positive or negative. GB1 is mentioned in risk theory, but GB2 

has no upper limit and therefore it is possible to be used for severity distributions and other 

applications involving risk theory where the upper tail has no hypothetical boundary. When a is 

positive, moments of all positive integer orders are defined.   

Models provided by GB2 have distributions that portray thick tails. The density and 

parameters have a complex relationship, but as the value of the parameters a or q become larger, 

the thinner the tails of the density function. In determining the skewness of the distribution, it is 

vital to know the relative values of p and q. The GB2 permits positive as well as negative 

skewness. 

The GB2 includes the Log-T (LT), Generalized Gamma (GG), Beta of the 2nd kind (B2), 

Burr types 3 and 12 (BR3 and BR12), log-Cauchy (LC), Lognormal (LN), Gamma (GA), 

Weibull, (W), Lomax (L), Fisk, Rayleigh (R), and exponential (EXP) as special or limiting cases. 

For ( )x >0, restriction, a log transformation is helpful, for distributions that are heavily tailed. 

Insurance data often encounters problems because of its heterogeneity in nature and frequently 

results in distributions with thick tails. Hogg and Klugman (1983) indicate how mixture 

distribution provides an approach to modeling unobservable heterogeneity. The GB2 gives an 

interpretation of the mixture distribution which allows but does not require heterogeneity. The 

GB2 came as a result of a structural distribution which is ( ; , , )GG x a p where the scale 

parameter   is distributed as a ( ; , , )GG a b q  . Each special case of the GB2 can be interpreted 
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as a mixture. An example is the Log-T which has been shown to be a Lognormal mixed with an 

inverse Gamma (Cummins and Friefelder 1978, and Hogg and Klugman 1983). 

The reason why the GB2 is important in the theory of risk is because it has great flexibility due 

to the availability of four parameters to model losses. 

Hence the GB2 can be justified to have a representation of claims arising from 

heterogeneous population of exposures. The GB2 distribution can also be obtained from the F 

distribution by making use of the transformation: 

                                                 ( )( ) .ap x
y

q b
  

If x is GB2, then y will be F with degrees of freedom 1 2d p and 2 2 .d q   
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Chapter 7: Application Scenarios for Single, Mixture, and Kernel Density 

Distribution 

After the application of goodness of fit tests for several distributions to each of the fifty 

states, there were 4 instances where exactly one distribution fit well (one clear winner), 30 

instances where multiple distributions fit adequately (multiple winning competitors), and 16 

instances where no parametric distribution fitted adequately (no winner).  Mixture distributions 

are applied when multiple distributions fit adequately, and the non-parametric method of kernel 

density estimator (KDE) is applied when no distribution fits adequately.  Expected values and 

premium for flood loss claims must be calculated for each of the three scenarios of single, 

mixture, and kernel density distributions. 

Following are examples of the calculations for each scenario. 

7.1 Single Distribution (Clear winner) 

Texas 

Since the Weibull distribution was the clear winner in the state of Texas, we will 

calculate its expected value followed by the premium of the state. This is given by 

                                         
1 1

( ) (1 ) 314.63 (1 )
0.4733

E X 


       

                                                    314.63 (3.1128) 

                                                    = 314.63 × 2.2249 

                                                    = 700.0203 (multiply by 1,000,000 to get the mean loss) 

                                                    = $700,020,300 
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                                      Premium = 
( )( 1) ($700,020,300)(1.02)

674,265

C O M

n

 
  

                                      Premium = $1059.00 

7.2 Mixture Distributions 
 
 

Mixture distributions are distributions put together to give the best type of models.  A 

mixture distribution has its shortfalls as Tarpey et al (2008) states that a common problem in 

statistical modeling is to first distinguish between finite mixture distributions and a homogenous 

non-mixture distribution. This Tarpey et al (2008) said was because finite mixture models are 

widely used in practice and often mixtures of normal densities are indistinguishable from 

homogenous non-normal densities.  

Testing the fit of finite mixture models is a different task, since asymptotic results on the 

distribution of likelihood ratio statistics do not hold; for this reason, alternative statistics are 

needed (Revuelta 2008). In insurance the number of claims is often from a Poisson-based 

discrete distribution whilst individual claim sizes are from a continuous right skewed 

distribution. The resulting distribution of total claim size is a mixed discrete-continuous model, 

with positive probability of a zero claim (Heller et al 2007).  

In modeling the flood loss in United States, classical parametric distribution may not be 

appropriate, hence the need to fall on a mixture of several different distributions that best 

explains the data spread. To do this, one may consider mixture modeling which consists of more 

than one distribution function that explains the data. I will discuss theoretical aspects of mixture 

distributions below. 

If and  are two distribution functions and p is the weight on distribution 1 and q=1-p 

on distribution 2, then p: q mixture of and has the distribution function F defined by             

1F 2F

1F 2F
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                                                    1 2( ) ( ) ( )F x pF x qF x                                              (Boland 2007) 

where 1,X X , and 2X are random variables with respective distributions , and , then we say 

that X is a p: q mixture of the random variables 

1,F F 2F

1X and 2X . In theory one can form mixtures of 

many types of random variables which lead to very complicated distributions. Consider the amount 

of flood loss from different States in the U.S where the random variable X represents the number 

of annual flood loss claims arising as a result of the flood loss from a randomly selected 

policyholder. Since distribution expresses the probability of a number of events (in this case 

floods) occurring in a fixed period of time with a known average rate and independently of the 

time from the last event, then our random variable X is often modeled as a Poisson distribution 

with parameter  , where  is the flood loss claim rate. 

Conditional on knowing the flood loss claim rate , which is not constant among 

policyholders, one might assume that the possibilities for  vary over (0 according to some 

probability distribution. For

, )

 , the most attractive distribution is Gamma distribution. Gamma 

distribution is frequently used as a probability model for waiting times. In this case, the waiting 

time is the time between average claims filed by two policy holders. This waiting time is a random 

variable that follows a gamma distribution.  

If ( )X P ~ and ( , )  ~ , then the mixture distribution is given by 

                                       
0

( ) ( ) (P X x P X x dG ) 


   |  

                                                        =
1

0 ! ( )

xe e
d

x

      


  

       for 0   

                                                         = ( ) 1 (1 )

0( ) !
x e d

x


    


    

                                                    (1) 
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Now consider 

                                                            I = ( ) 1 (1 )

0

x e d   
      

                                                            I = ( 1) ( 1)

0
lim x

a
e d   

    

   

Using integration by parts we have 

                                                             I = 
( 1)

( 1) 1 ( 1)

0 0

1
lim ( )

1 1

ax x

a

e x
e d

 
     

 

       



 
 

    

                                                             I = 
( 1)

( 1) 2 ( 1)

0

1
lim ( )

1 1

a
x x

a

e x
a e


 

d  
 

       



 
 

    

                                                             I = 2 ( 1)

0

1
( )

1
xx

e d    


     
   

Now we know that 

                                                             I =  ( ) 1 (1 )

0

x e d   
      

gave us 

                                                             I =  2 ( 1)

0

1
( )

1
xx

e d    


     
   

Using the same approach of integration by parts for the above, we have 

                                                             I = 3 ( 1)

0

1 2
( )( )

1 1
xx x

e d     
 

       
    

Continuing the process to integral, we have ( 1)thx  

                                                             I = ( 1)

0

1 2 3
)( )( )...

1 1 1

x x x
e d    

  
       

     

 

Finally for ( )thx  integral, this gives us 
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                                                              I =
1 2 3

( )( )( )...( )
1 1 1

x x x 1

1

  
   
     
   

  

Therefore  

                                                             I = 
( 1

( 1)x

x )!



 

 


 

Rewriting the numerator using the gamma function, we have 

                                                             I =
(

( 1)x

x )



 

 


                                                                       (2) 

Putting equation (2) into equation (1), we have 

                                                 P(X=x) =
( )

( ) ! ( 1) x

x

x





 
  

 
 

 

                                                              = 
( ) 1

.
( ) ! ( 1) ( 1)x

x

x





 
  

 
  

 

                                                              =
( ) 1

( ) ( )
( ) ! 1 1

xx

x
 

  
 
  

 

                                                              = 
( )

( ) !
xx

p q
x




 


                                                                 (3)    

This follows a negative binomial distribution where 
1

p






and

1

1
q





. 

In summary if ( )X P ~ and ( , )  ~ , then ( , )X NB p~ .The Negative Binomial 

distribution then best fits the arrival of flood loss data for which the claim rate need not to be 

constant or homogenous, properties that overshadow Poisson distribution. The Negative 

Binomial distribution is a two parameter distribution. 

 I will now calculate the mean and premium for the state of Alabama where the 

Lognormal and Weibull distributions failed to reject. 
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In general 

                      ( ) ( )E X xf x




  dx  

For mixture distribution of ( )af x  and, ( )bf x  af is weighted by a factor of , andaw bf   is weighted 

by a factor of =1 . bw aw

                                    ( ) ( ) ( )a a b bE X w xf x dx w xf x dx
 

 

        

                                               =  ( ) ( )a a b bw xf x dx w xf x dx
 

 

 

                                               = ( ) ( )a a b bw E X w E X                                                                (***) 

 Alabama 

Suppose a data set consists of observations x1,…, xn from a probability distribution 

f(x,θ1,θ2) depending upon two unknown parameters, then the maximum likelihood estimates 

θ1and θ2 are the values of the parameters that jointly maximize the likelihood function 

  1 2 1 2 1 1 2 1 2( ,..., , , ) ( , , ) ... ( , , )nL x x f x f x                                                 (1) 

which can be thought of as the “likelihood” of observing the data values x1,…,xn for a given 

value of θ1and θ2. To maximize the joint density functions, one will have to take the derivatives 

of the log-likelihood with respect to θ1and θ2 and setting the two resulting expressions equal to 

zero.  

When two distributions A and B fit (x1,…,xn), then the weight on distribution A is 

calculated as 

    
A

A
A B

L
w

L L


  
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where LA is the value of the maximum for the likelihood function in eqn. (1) for parameter 

estimates θ1, and θ2. Similarly the weight on distribution B will be calculated as 

    
B

B
B A

L
w

L L


  

where LB is the value of the maximum for the likelihood function in eqn. (1) for parameter 

estimates θ1, and θ2. 

For Alabama two distributions, Weibull and Lognormal fit using the Kolmogorov-Smirnov     

(K-S) test statistic. JUMP software provides  

     
2 log( ) 414.5060LognormalL 

and 

     
2 log( ) 412.3174WeibullL 

Now calculating the likelihood for the Lognormal and Weibull distributions we have 

     2 log( ) 414.5060LognormalL 

                                                       log( ) 207.2530LognormalL      

                                                               
207.2530 901.00114 10LognormalL e     

and 

     2 log( ) 412.3174WeibullL 

    log( ) 206.1587WeibullL    

    
206.1587 902.99018 10WeibullL e     

This gives me the weights 

90 90

90 90 90

(1.00114 10 ) (1.00114 10 )
0.2508

(1.00114 10 ) (2.99018 10 ) (3.99132 10 )
Lognormal

Lognormal
Lognormal Weibull

L
w

L L

 

  

 
   

      
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and 

90 90

90 90 90

(2.99018 10 ) (2.99018 10 )
0.7492

(2.99018 10 ) (1.00114 10 ) (3.99132 10 )
Weibull

Weibull
Weibull Lognormal

w
w

w w

 

  

 
  

    
  

Now, the mean (Loss) from the Lognormal distribution is given by 

   

2 2(2.5692)
2.1364 5.43682 2( ) 229.5765E X e e e

 
     

and that of the Weibull distribution is also given by 

      
1 1

( ) (1 ) 28.853 (1 )
0.4612

E X 


     
  

                                                    
28.853 (3.1683) 

                                                  = 28.853 × 2.3489 

                                                  = 67.7728 

Therefore mixing the two distributions in this proportion using (***), I can get the expected loss 

which is given by 

      (0.2508) (229.5765) (0.7492) (67.7728)E X    
 

                                                 = 57.5778 + 50.7754 

                                                  = 108.3532 

                                                   = $108,353,200 (multiply by 1,000,000 to get the mean loss) 

Assuming that there is no operational cost, O, the premium will be calculated as follows:  

                                    
( )(C O M

n

 


1)
 

  
From section 1.2 on page 3 we defined that C is the total expected loss amount, M is the 

target profit margin, and n is the number of insured entities in the state.  Therefore the premium 

for the state of Alabama is calculated as: 
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                                       Premium ≈ (108,353,200) × (1.02) / 56908   

                                       Premium ≈ $1,942 

 

7.3 Kernel Density Estimation  

Kernel density estimation is a non-parametric approach of estimating the probability 

density function (pdf) of a random variable. In recent times density estimation has been used in 

many fields, including archaeology (e.g., Baxter, Beardah, and Westwood, 2000), banking (e.g., 

Tortosa-Ausina, 2002), climatology (e.g., DiNardo, Fortin, and Lemieux, 1996), genetics (e.g., 

Segal, and Wiemels, 2002), hydrology (e.g., Kim, and Heo, 2002) and physiology (e.g., Paulsen, 

and Heggelund, 1996). Sheather (2004) has also used this approach to estimating geographic 

customer densities. In this discussion I intend to use kernel density estimate to illustrate how 

sample data from the flood loss of New Jersey can be estimated into a continuous probability 

density function. I will consider a nonparametric approach where less rigid assumptions will be 

made about the distribution of the observed data. Although it will be assumed that the 

distribution has a probability density f, the data are allowed to speak for themselves in 

determining the estimate of f more than would be in the case if f were to fall in a given 

parametric family.  

 In estimating a density using the kernel density estimation requires a kernel function K 

and a smoothing parameter h which is also called the bandwidth. The density which is generally 

estimated will be sensitive to the choice of the kernel function, but may be strongly affected by 

the value of the bandwidth. A large bandwidth results in a smooth- looking surface, while a small 

h results in a surface which is bumpier.  
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 If we denote 1 2, ,..., nX X X to be a sample of size n from a random variable with density f, 

then the kernel density estimate of f at point x is given by (See Sheather 2004) 

               
1

1
( ) ( )

n
i

h
i

x X
f x K

nh h






       ,                                                                     

where the kernel K satisfies ( ) 1K x dx  , n is the number of data points and h is the bandwidth 

or window width. In this case, K satisfies the conditions 

                    ( ) 1K y dy  , 

                    , ( ) 1yK y dy 

The Gaussian kernel which is a popular choice for K is given by 

                    
2

2

1
( ) exp( )

22

y
K y





                                                                         

A commonly used choice of an overall measure of the inconsistency between the kernel density 

estimate, hf


and density, f is the mean integrated square error (MISE), which is given by 

2( ) ( ( ) ( ))h hMISE f E f y f y dy
   

  



                                                                       

This may be computed for a range of bandwidth and the optimum choice is the width that 

minimizes this error. Sprent et al (2007) explains that there are also some rule of thumb guides 

for choosing the bandwidth. One of the often used rule of thumbs for bandwidth h which 

minimizes the mean integrated square error is given by  

1/51.06h s n , 

where s is the sample standard deviation and n is the number of data points. This bandwidth 

selection is based on Gaussian kernel. There are different softwares for calculating the kernel 
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density estimates. I used the R software which produces kernel density estimates with a default 

kernel the Gaussian density with mean 0 and standard deviation 1.  

Figure 7.1. Kernel density estimates based on the bandwidth that minimizes the mean integrated square error. 

0 1000 2000 3000 4000 5000

0
.0

0
0

0
0

.0
0

0
2

0
.0

0
0

4
0

.0
0

0
6

0
.0

0
0

8
0

.0
0

1
0

0.
0

0
1

2

R's density() kernels with bw = 273

D
e

n
si

ty

 
 
Figure 7.2. Kernel density estimates with under smooth graph. 
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I will use the flood loss of New Jersey to demonstrate the kernel density estimation 

choosing an appropriate bandwidth, h. Figure 7.1 shows Gaussian kernel density estimates based 

on the bandwidth which minimizes the mean integrated square error (MISE). When this method 

is implemented, R gives the graph as shown above. We will briefly review different methods for 

choosing a value of the bandwidth, h. The bandwidth that generates a good consistent estimate of 

the Gaussian kernel is given by 

                                     
1

51.06miseh   n                                                    (Silverman 1985)    

where denotes the standard deviation and n is the sample size. From the flood loss of New 

Jersey,  = 533.18, n = 46 and so 

                                                         
1

51.06(533.18)(46) 273MISEh
    

Sometimes Silverman rule of thumb (SROT) bandwidth is applied. It is given by 

                                                             
1

50.9SROTh A
 n                                         (Silverman 1985) 

where A is the sample interquartile range/1.34 and n is the number of data points. Application of 

this rule yields a bandwidth of  which does not produce a smooth curve as can be seen in 

Figure 7.2.  

14h 

I will now calculate the mean and premium for the state of Hawaii and use the Riemann sum 

approach to show that the area under the curve is one which is a condition of a kernel density. 

 

Riemann Sum Application: 

The Riemann sum calculates the sum of the area of rectangles whose weight is defined by 

the value of a given function at the boundary point of each sub interval.  Let f be defined on a 
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,k

closed interval [a, b], and let P be a partition of [a, b]. A Riemann sum of f(x) for P is any 

expression Rp of the form 

1

( )
n

p k
k

R f w x


                                                     (Swokowski et al 1994) 

where wk is in [xk-1, xk] and k = [1, 2,…, n].  Let ∆xk be defined as 

                                         1k k kx x x     

We have observed that the density function in R produces uniform values for ∆xk, so 

                                            
1

0
1

, ( ),k k

n
k k

x x x

x x
x x

n





 


 

 

Then  

     
1

( )
n

p k
k

kR x f w


  
 

Now, since  

   
As n∞, xk0, and Rp becomes an approximation of the integral  

( )
b

a

f x dx
 

where a = x0 and b = xn (the end-points of the interval [a,b]). 

The integral over the range of a true probability density function (pdf) should be 1.  Thus, 

a Riemann sum of a Kernel Density Estimator (KDE) function should sum to 1.  The KDE 

generated by the R software was checked and validated that this was true. The default output 

given by R estimates the density (y) at each of 512 equally spaced points (x), based on a range of 

the input data set. In this case with the R software, n was 512, and 

    
max( ) min( )

512k

x x
x


   
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Hawaii 

Hawaii is an example where none of the tested parametric distributions fit the data 

adequately.  Hence, a KDE function was used as the non-parametric approximation of this 

distribution.  The Riemann sum was used to validate that the KDE curve generated by the 

software integrates to1.  Let F(wk) = F(xk) = yk, the probability that the flood loss amount will be 

between xk-1 and xk.  This gives 

                       
512

1

1.000207Hawaii k k
k

R x y


  

R was used to compute the kernel density for the state of Hawaii. If the kernel density 

estimation is done on the raw flood loss data, the KDE has positive density for negative flood 

loss values. But, in reality, there are never negative flood losses. To solve for this difficulty, a log 

transformation was utilized. Let v be the raw flood loss data. 

                                                            z= ln(v) 

The KDE was generated on z in the R software. The log transformation was then reversed using 

                                                               x = ez  

This, of course, means xi is never less than zero, as desired.                                                                                     

 Now we can calculate the expected value as a probability mass function by multiplying 

each observation by y, and summing these products to get an estimate of the mean. It is given by 

the formula 

   
: ( ) 0

[ ] ( )
x p x

E X x


  p x                                                               (Ross 2007)  

For purposes of using the numerical approximation produced by the software, treat the 

approximation as a probability mass function, where the probability is uniform for each interval 

xi-1<x<xi. Then the expected flood loss amount 
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                         C+O = 1
1

( )
n

i i i
i

x p x x x


   ,  

where p(xi-1<x<xi) = p(zi-1<z<zi). 

Thus, expected flood loss amount, using a log transformation and kernel density method, is 

$37,584,220.  

For Hawaii the number of policy holders, n, is 59336, and the margin M is assumed to be 0.02.  

The premium per policy per year is therefore calculated as                                                           

Premium = 
( )( 1) ($37,584, 220)(1.02)

$646.00
59336

C O M

n

 
   
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Chapter 8:  Conclusions and Future Study 

 
This project has investigated what distribution(s) fit the flood loss data covering all the 50 

States of the United States of America from 1955 to 2000, using the Kolmogorov-Smirnov test 

statistic and Anderson-Darling test statistic. Based on the analysis performed, the following 

conclusions can be made. 

 Considering the distributions using the Kolmogorov-Smirnov statistic, the 

following were the statistics.  The Weibull distribution was ranked first 25 times, 

followed by the Frechet distribution. The standard Beta and Lognormal 

distributions which were jointly ranked third appeared 5 times each. This was 

followed by the gamma distribution with fitted losses from 4 States.  

 On the other hand the Anderson-Darling statistic had the following ranking for the 

distributions. The Weibull distribution came first appearing 25 times followed by 

the Frechet distribution appearing 18 times. The lognormal distribution was 

ranked third fitting well to eight States with Gamma and Beta distributions 

coming forth and fifth with 3 and 1 respectively.  

 The Weibull and Frechet distributions had a good fit compared to the Gumbel, 

Normal, Lognormal, Gamma, and standard Beta distributions making extreme 

value distributions suitable for fitting flood losses, even though it did not fit well 

for some States. 
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 There are noticeable correlations among some adjacent states.  This means that 

flooding in one State can result in flooding in another neighboring State. 
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Appendix A 

Severity Distributions: 

Beta ( , )   

pdf                                    1 11
( / , ) (1 ) ,

( , )
f x x x

B
  

 
       0 1,x    0,    0   

 

mean and variance        ,EX


 



   

2( ) (
VarX

1)


   


  

 

 

skewness                          
2( ) 1

( 2)

   
  
  
 

 

 
Gamma ( , )   

pdf                                     1 /1
( / , ) ,

( )
xf x x e 

 
 

 


   0 ,x      , 0    

 
mean and variance        ,EX     2VarX      
 

skewness                          
2


 

 
Lognormal 2( , )    

pdf                                      
2 2(log ) /(2 )

2 1
( / , ) ,

2

xe
f x

x

 

 
 

 

   0 ,x     ,      0   

 

mean and variance           
2

( )2 ,EX e
    

2 22( ) 2VarX e e       
 

skewness                            
2 2

( 2)e e  1  
 
 
Normal 2( , )   

pdf                                       
2 22 ( )1

( / , ) ,
2

xf x e   
 

  /(2 ) ,  x    ,      0     

 
mean and variance          ,EX    2VarX   
 
skewness                            0 
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Pareto ( , )   

pdf                                       
1

( / , ) ,f x
x





       ,a x    0,    0   

 

mean and variance          ,
1

EX






  1,       
2

2
,

( 1) ( 2)
VarX


 


 

  2   

 

skewness       
2(1 ) 2

,
( 3)

 
 
 


   3   

 
Weibull ( , )   

pdf         1( / , ) ,
x

f x x e


  


   0 ,x     0,    0   

 

mean and variance        
1 1

(1 ),EX 


     
2

22 1
(1 ) (1 )VarX 

 
 

     
 

 

 
 
Frequency Distributions: 
 
 
Binomial ( ,  )n P
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!

( / , ) (1 ) ;x

!( )!
n xn
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x n x

  

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Poisson ( )  

pmf    ( / ) ;
x

!

e
P X x

x




    0,1,...;x    0     

 
mean and variance  ,EX    VarX   
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Appendix B 
 

 
Table B.1 Goodness-of-fit and Distribution Parameters (Alaska) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.28149 

 
1 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.00312  α2= 0.12486 

 
Frechet 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.35423 

     
    3 

Reject H0 at 
α=0.01,0.05 & 0.1 


=0.49141  =0.10785 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.77371 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.02789   β=1720.6 

 
Gumbel 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.49894 

 
    6 

Reject H0 at 
α=0.01,0.05 & 0.1 


=224.05  =-81.334 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.40305 

 
4 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.3958      μ=0.92416 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.47757 

 
5 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=287.35      μ=47.99 

 
Weibull 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.34688 

 
2 

 Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.31815     β=1.543 

 
 
 
 
 
Figure B.1 Fitted beta distribution and histogram for Alaska  
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Table B.2 Goodness-of-fit and distribution Parameters (Arizona) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.33509 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.10565  α2= 0.85215 

 
Frechet 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

   
  0.1786 

 
    3 

Fail to reject H0 at 
α=0.01,0.05 & 0.1 


=0.36528  =0.59276 

 
Gamma 

*** 
0.2400 

8** 
0.2002 

* 
0.1805 

 
0.17579 

 
2 

Fail to reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.20053   β=329.58 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

   
  0.36898 

     
    7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=115.07  =-0.33213 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

 
0.1805 

 
0.19552 

 
4 

 Reject H0 at 
α=0.1 

 
σ=3.0796      μ=1.0949 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.32827 

 
5 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=147.59      μ=66.09 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.17377 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.3514     β=14.039 

 
 
 
 
 
 
 Figure B.2 Fitted Weibull distribution and histogram for Arizona  
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Table B.3 Goodness-of-fit and Distribution Parameters (Arkansas) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.40666 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.07626  α2= 0.74122           

 
Frechet  

*** 
0.2400 

** 
0.2002 

* 
0.1805 

   
  0.14521 

 
    3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.44867  =2.9167 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.26938 

 
4 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.15501  β=748.1 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

   
   0.3946 

 
    6 

Reject H0 at 
α=0.01,0.05 & 0.1 


=229.65  =-16.595 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.07713 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.5344    μ=2.3967 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.34702 

 
5 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=294.53      μ=115.96 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.07339 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.43347     β=37.938 

 
 
 
 
 Figure B.3 Fitted Weibull distribution and histogram for Arkansas  
 

Probability Density Function

Histogram Weibull

x
1400120010008006004002000

f(
x)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 
 
 
 
 
 
 
 
 



www.manaraa.com

74 
 
 
Table B.4 Goodness-of-fit and Distribution Parameters (California) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

*** 
0.2400 

** 
0.2002 

 
0.1805 

  
0.1919 

 
4 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.12378 α2= 1.2044        

 
Frechet  

*** 
0.2400 

 
0.2002 

 
0.1805 

 
   0.22339 

 
    5 

Reject H0 at 
α=0.01,0.05 


=0.30267  =6.7467 

 
Gamma 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.09601 

 
1 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.26245  β=2954.6 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

    
  0.33858 

 
    7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=1180.2  =94.21 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.1669 

 
3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=3.494      μ=3.8289 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.30425 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=1513.6      μ=775.42 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.09647 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.36534    β=245.13 

 
 
 
 
  
 
 Figure B.4 Fitted Weibull distribution and distribution for California  
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Table B.5 Goodness-of-fit and Distribution Parameters (Colorado) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.80303 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.10487  α2= 1.5658           

 
Frechet  

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
  0.17958 

 
    2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.36624  =0.36258 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.60995 

 
6 

 Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.17681   β=388.15 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.48051 

 
    5 

Reject H0 at 
α=0.01,0.05 & 0.1 


=1163.1  =-361.4 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.17053 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.5692      μ=2.1364 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.4177 

 
4 

 Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=163.21      μ=68.629 

 
Weibull 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.21514 

 
3 

Fail to Reject H0 at 
α=0.01 & reject H0  
at α=0.05 & 0.1 

 
α=0.46117     β=28.853 

 
 
 
 
     
Figure B.5 Fitted lognormal distribution and histogram for Colorado  
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Table B.6 Goodness-of-fit and Distribution Parameters (Connecticut) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.93198 

  
  7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.0014 α2= 0.05033            

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.30263 

  
  1 

Reject H0 at 
α=0.01,0.05 & 0.1 


=0.42308  =0.12988 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.72961 

 
  6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.0243   β=11237.0 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.50373 

 
  5 

Reject H0 at 
α=0.01,0.05 & 0.1 


=1365.7  =-515.28 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.35831 

 
  3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.9226     μ=0.52569 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.4961 

 
  4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=1751.6      μ=273.05 

 
Weibull 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.30371 

 
  2 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.27401   β=2.9717 

 
 
 
 
 
Figure B.6 Fitted Weibull distribution and histogram for Connecticut  
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Table B.7 Goodness-of-fit and Distribution Parameters (Delaware) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.76594 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.0373α2= 0.69685            

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.44003 

 
     2 

Reject H0 at 
α=0.01,0.05 & 0.1 


=1.0171  =0.07304 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.69142 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.08564 β=5.967 

 
Gumbel 

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.44861 

 
     3 

Reject H0 at 
α=0.01,0.05 & 0.1 


=1.3615  =-0.27486 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.46513 

 
5 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=1.0792     μ=-1.9796 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.4609 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=1.7462      μ=0.51104 

 
Weibull 

 
0.2400 

 
0.2002 

 
0.1805 

 
 0.42787 

 
1 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.54953   β=0.21479 

 
 
 
 
   
 
Figure B.7 Fitted Weibull distribution and histogram for Delaware   
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Table B.8 Goodness-of-fit and Distribution Parameters (Florida) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.23979 

 
5 

Fail to Reject H0 at 
α=0.01 

 
α1= 0.12455 α2= 1.01            

 
Frechet 

 *** 
0.2400 

** 
0.2002 

* 
0.1805 

 
  0.15215 

 
   4 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.40319  =1.7103 

 
Gamma 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.116 

 
   2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.29183  β=231.47 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
   0.32581 

 
   7 

Reject H0 at  
α=0.01,0.05 & 0.1 


=97.497  =11.274 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.1382 

 
   3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.7166   μ=1.9869 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.31542 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=125.04      μ=67.551 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.11142 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.43482  β=27.04 

 
 
 
 
 
     Figure B.8 Fitted Weibull distribution and histogram for Florida   
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Table B.9 Goodness-of-fit and Distribution Parameters (Georgia) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.32698 

 
5 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.12799α2= 1.251            

 
Frechet  

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
  0.17774 

 
    3 

Fail to Reject H0 at 
α=0.01,0.05& 0.1 


=0.46065  =0.94093 

 
Gamma 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.23202 

 
4 

Fail to Reject H0 at 
α=0.01 and rejects H0 
at α=0.05& 0.1 

 
α= 0.20146  β=139.03 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.36869 

 
    7 

Reject H0 at  
α=0.01,0.05 & 0.1 


=48.655  =-0.07538 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.14339 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.4362     μ=1.2276 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.34359 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=62.403      μ=28.009 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.10905 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.45931 β=11.242 

 
 
 
  
 
  Figure B.9 Fitted Weibull distribution and histogram for Georgia  
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Table B.10 Goodness-of-fit and Distribution Parameters (Hawaii) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.93198 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.02509 α2= 0.65523          

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.29954 

 
    1 

Reject H0 at 
α=0.01,0.05 & 0.1 


=0.44853  =0.18867 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.72961 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.06276  β=279.3 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.46173 

 
    4 

Reject H0 at 
α=0.01,0.05 & 0.1 


=54.553  =-13.961 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.35831 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.512  μ=0.30331 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.4961 

 
5 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=69.967      μ=17.528 

 
Weibull 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.30371 

 
2 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.37054  β=2.8071 

 
 
 
 
  
  
Figure B.10 Fitted beta distribution and histogram for Hawaii  
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Table B.11 Goodness-of-fit and Distribution Parameters (Idaho) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.78304 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.01625 α2= 0.41534           

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.1713 

 
    1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.38104  =0.42294 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.60413 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.04662  β=3091.2 

 
Gumbel 

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.47685 

 
    5 

Reject H0 at 
α=0.01,0.05 & 0.1 


=520.39  =-156.27 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

 
0.1805 

 
0.18507 

 
3 

Fail to Reject H0 at 
α=0.01,0.05 & Reject 
H0 at α=0.1 

 
σ=3.1032     μ=0.74413 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.41455 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=667.42      μ=144.1 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.1742 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.30944   β=10.668 

 
 
 
 
Figure B.11 Fitted Weibull distribution and histogram for Idaho  
 

Probability Density Function

Histogram Weibull

x
450040003500300025002000150010005000

f(
x)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 
 
 
 
 
 



www.manaraa.com

82 
 
 
 
Table B.12 Goodness-of-fit and Distribution Parameters (Illinois) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.27088 

 
5 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.11616α2= 0.69897           

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.16842 

 
   4 

Fail to Reject H0 at 
α=0.01,0.05& 0.1 


=0.386  =6.8325 

 
Gamma 

*** 
0.2400 

** 
0.2002 

 
0.1805 

 
0.16393 

 
3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.24882β=1604.7 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.3981 

 
   7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=624.12  =39.033 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.08997 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.8733     μ=3.4395 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.33153 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=800.46      μ=399.28 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.1237 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.40103 β=124.77 

 
 
 
 
   
     Figure B.12 Fitted lognormal distribution and histogram for Illinois  
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Table B.13 Goodness-of-fit and Distribution Parameters (Indiana)  

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.23939 

 
5 

Fail to Reject H0 at 
α=0.01 and rejects H0 
at α=0.05& 0.1 

 
α1= 0.16043α2= 1.3813            

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.22144 

 
   4 

Fail to Reject H0 at 
α=0.01 


=0.41605  =7.9147 

 
Gamma 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.13411 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.27262β=705.15 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.3699 

 
   7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=287.06  =26.536 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.15007 

 
3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.5273     μ=3.4747 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.30089 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=368.18      μ=192.23 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.08209 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.50973  β=101.87 

 
 
 
 
  
     Figure B.13 Fitted Weibull distribution and histogram for Indiana  
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Table B.14 Goodness-of-fit and Distribution Parameters (Iowa) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.31125 

 
4 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.08257α2= 1.0724            

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.14677 

 
    2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.35177  =3.2904 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.25717 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.13745 β=3129.6 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.43678 

 
   6 

Reject H0 at 
α=0.01,0.05 & 0.1 


=904.67  =-92.023 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.11949 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=3.1979     μ=-2.8773 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.36895 

 
5 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=1160.3      μ=430.16 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.8976 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.11 

 
α=0.35043β=850.44 

 
 
 
 
 
  
Figure B.14 Fitted Weibull distribution and histogram for Iowa  
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Table B.15 Goodness-of-fit and Distribution Parameters (Kansas) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.2392 

 
5 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.0373α2= 0.69685            

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

    
   0.17833 

 
   4 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.38854  =3.232 

 
Gamma 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.1051 

 
2 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.08564 β=5.967 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.37189 

 
   7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=152.34  =28.756 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.11553 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=1.0792     μ=-1.9796 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.30649 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=1.7462      μ=0.51104 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.09396 

 
1 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.54953   β=0.21479 

 
 
 
 
  
      Figure B.15 Fitted Weibull distribution and histogram for Kansas  
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Table B.16 Goodness-of-fit and Distribution Parameters (Kentucky)  

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.10564 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.24354α2= 1.9092            

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.181 

 
   4 

Fail to Reject H0 at 
α=0.01,0.05 


=0.30512  =3.5932 

 
Gamma 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.22777 

 
5 

Fail to Reject H0 at 
α=0.01 & rejects H0 at 
α=0.05& 0.1 

 
α= 0.43403β=728.97 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.28512 

 
   7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=374.45  =100.25 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.16737 

 
3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=3.4075     μ=3.1762 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.25504 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=480.25      μ=316.39 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.13918 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.38   β=118.44 

 
 
 
 
 
       Figure B.16 Fitted beta distribution and histogram for Kentucky  
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Table B.17 Goodness-of-fit and Distribution Parameters (Louisiana)  

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.22718 

 
5 

Fail to Reject H0 at 
α=0.01 

 
α1= 0.07604α2= 0.79962         

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.14115 

 
   1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.31782  =1.5043 

 
Gamma 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.21139 

 
4 

Fail to Reject H0 at 
α=0.01 

 
α= 0.1989  β=2711.1 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.47097 

 
   7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=942.72  =-4.9287 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.14183 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=3.5803  μ=2.2663 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.40742 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=1209.1      μ=539.22 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.14249 

 
3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.29314  β=59.477 

 
 
 
 
Figure B.17 Fitted lognormal distribution and histogram for Louisiana  
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Table B.18 Goodness-of-fit and Distribution Parameters (Maine) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.3567 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.09158 α2= 0.84141         

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.29744 

 
   1 

Reject H0 at 
α=0.01,0.05 & 0.1 


=0.43424  =0.21975 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.34556 

 
4 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.17715  β=60.039 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.36868 

 
   7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=19.703  =-0.73692 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.3495 

 
5 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.4881 μ=0.14273 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.3383 

 
3 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=25.27      μ=10.636 

 
Weibull 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.32494 

 
2 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.40767 β=3.1526 

 
 
 
 
 
Figure B.18 Fitted Weibull distribution and histogram for Maine  
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Table B.19 Goodness-of-fit and Distribution Parameters (Maryland)  

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.8209 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.01235α2= 0.033709         

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

    
   0.21408 

 
   1 

Fail to Reject H0 at 
α=0.01 


=0.42037  =0.20151 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.65064 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.04118 β=2018.2 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.48729 

 
   5 

Reject H0 at 
α=0.01,0.05 & 0.1 


=319.33  =-101.21 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.24905 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.8481  μ=-0.12169 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.41963 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=409.56      μ=83.113 

 
Weibull 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.22938 

 
2 

Fail to Reject H0 at 
α=0.01 

 
α=0.30436  β=4.1725 

 
 
 
 
   
Figure B.19 Fitted Weibull distribution and histogram for Maryland  
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Table B.20 Goodness-of-fit and Distribution Parameters (Massachusetts)  

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.80925 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.01263  α2= 0.33802        

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.34944 

 
   1 

Reject H0 at 
α=0.01,0.05 & 0.1 


=0.37009  =0.0975 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.65047 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.04203  β=3572.8 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.50327 

 
   5 

Reject H0 at 
α=0.01,0.05 & 0.1 


=571.12  =-179.49 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.36182 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=3.0012  μ=-0.64624 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0. 43259 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=732.48      μ=150.17 

 
Weibull 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.3552 

 
2 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.2651  β=2.8652 

 
 
 
 
   
 
Figure B.20 Fitted Weibull distribution and histogram for Massachusetts  
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Table B.21 Goodness-of-fit and Distribution Parameters (Michigan) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.78328 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.01852α2= 0.38736          

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.232 

 
   1 

Fail to Reject H0 at 
α=0.01 


=0.45764  =0.19928 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.60549 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.05598 β=705.04 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.50963 

 
   5 

Reject H0 at 
α=0.01,0.05 & 0.1 


=130.07  =-35.606 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.26067 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.6011  μ=0.2576 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.43914 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=166.82      μ=39.471 

 
Weibull 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.24835 

 
2 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.33444  β=3.1638 

 
 
 
 
 
  
      Figure B.21 Fitted Weibull distribution and histogram for Michigan  
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Table B.22 Goodness-of-fit and Distribution Parameters (Minnesota) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.23964 

 
5 

Fail to Reject H0 at 
α=0.01 

 
α1= 0.09965 α2= 1.2048          

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.09466 

 
   1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.36629  =1.4305 

 
Gamma 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.19464 

 
4 

Fail to Reject H0 at 
α=0.01 

 
α= 0.209  β=951.32 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.42504 

  
   7 

Reject H0 at  
α=0.01,0.05 & 0.1 


=339.1  =3.0954 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.10779 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=3.1297  μ=1.9772 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.36003 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=434.91      μ=198.83 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.15198 

 
3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.33466  β=35.613 

 
 
 
 
 
  Figure B.22 Fitted lognormal distribution and histogram for Minnesota  
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Table B.23 Goodness-of-fit and Distribution Parameters (Mississippi) 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.44275 

 
  7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.05343 α2= 0.68208          

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.174 

 
   3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.40729  =2.5707 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.3599 

 
   4 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.11286  β=1395.8 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.44213 

 
   6 

Reject H0 at  
α=0.01,0.05 & 0.1 


=365.62  =-53.507 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.10487 

 
   2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.7597  μ=2.4064 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.37145 

 
   5 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=468.92      μ=157.53 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.08254 

 
   1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.40525  β=42.407 

 
 
 
 
  
 
Figure B.23 Fitted Weibull distribution and histogram for Mississippi  
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Table B.24 Goodness-of-fit and Distribution Parameters (Missouri)  

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.25775 

 
5 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.11516 α2= 1.111          

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.1343 

 
   3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.3725  =5.1655 

 
Gamma 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.16141 

 
4 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.19485  β=1786.2 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.37584 

 
   7 

Reject H0 at  
α=0.01,0.05 & 0.1 


=614.75  =-6.8102 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.07617 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.9768  μ=3.2223 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.3295 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=788.45      μ=348.03 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.06265 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.3936  β=104.97 

 
 
 
 
  
 
Figure B.24 Fitted Weibull distribution and histogram for Missouri  
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Table B.25 Goodness-of-fit and Distribution Parameters (Montana) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.6322 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.03579  α2= 0.53199           

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.17087 

 
   2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.43623  =0.41609 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.43379 

 
4 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.08763  β=769.57 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.50681 

 
   6 

Reject H0 at 
α=0.01,0.05 & 0.1 


=177.62  =-35.091 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.17494 

 
3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.7399    μ=0.52298 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.43945 

 
5 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=227.81      μ=67.434 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.16623 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.33919     β=7.1136 

 
 
 
 
 Figure B.25 Fitted Weibull distribution and histogram for Montana  
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Table B.26 Goodness-of-fit and Distribution Parameters (Nebraska) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.20668 

 
5 

Fail to Reject H0 at 
α=0.01,0.05& 
Reject H0 at α=0.1 

 
α1= 0.14938  α2= 1.6631           

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.20331 

 
   4 

Fail to Reject H0 at 
α=0.01 


=0.36531  =2.523 

 
Gamma 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.1134 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.27375 β=414.32 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.36759 

 
   7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=169.02  =15.86 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.14525 

 
3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.893    μ=2.5221 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.30057 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=216.78      μ=113.42 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.12837 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.43647    β=48.3 

 
 
 
Figure B.26 Fitted gamma distribution and histogram for Nebraska  
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Table B.27 Goodness-of-fit and Distribution Parameters (Nevada) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.63669 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.0349α2= 0.50257          

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.2104 

 
   1 

Fail to Reject H0 at 
α=0.01 


=0.39933  =0.14745 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.40905 

 
5 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.08865  β=407.82 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
  0.47939 

 
   6 

Reject H0 at 
α=0.01,0.05 & 0.1 


=94.673  =-18.494 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.26276 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.9473    μ=0.39479 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.40894 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=121.42      μ=36.152 

 
Weibull 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.23768 

 
2 

Fail to Reject H0 at 
α=0.01 

 
α=0.31628     β=3.2109 

 
 
 
Figure B.27 Fitted Weibull distribution and histogram for Nevada  
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Table B.28 Goodness-of-fit and Distribution Parameters (New Hampshire) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.30577 

 
1 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.00735 α2= 0.25716          

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.31686 

 
   2 

Reject H0 at 
α=0.01,0.05 & 0.1 


=0.50323  =0.13186 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.7371 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.03555  β=921.78 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.54657 

 
   6 

Reject H0 at 
α=0.01,0.05 & 0.1 


=135.51  =-45.449 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.34092 

 
4 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.3679   μ=0.76482 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.47618 

 
5 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=173.8      μ=32.768 

 
Weibull 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.31891 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.33445     β=1.7484 

 
 
 
 
Figure B.28 Fitted gamma distribution and histogram for New Hampshire  
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Table B.29 Goodness-of-fit and Distribution Parameters (New Jersey) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.40798 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.07887  α2= 0.91462           

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.26584 

 
   1 

Reject H0 at 
α=0.01,0.05 & 0.1 


=0.28967  =0.23803 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.269 

 
2 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.14232  β=1449.4 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.44467 

 
   7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=426.34  =-39.809 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.32073 

 
4 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=3.8085    μ=0.61775 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.38038 

 
5 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=546.8      μ=206.28 

 
Weibull 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.30074 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.26186     β=13.55 

 
 
 
 
Figure B.29 Fitted gamma distribution and histogram for New Jersey  
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Table B.30 Goodness-of-fit and Distribution Parameters (New Mexico) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.74013 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.02345  α2= 0.54466           

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.22736 

 
   2 

Fail to Reject H0 at 
α=0.01 


=0.43397  =0.24648 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.59401 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.0562  β=509.13 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.42137 

 
   5 

Reject H0 at 
α=0.01,0.05 & 0.1 


=94.108  =-25.707 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.26059 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.6848    μ=0.00923 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.40636 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=120.7      μ=28.614 

 
Weibull 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.22336 

 
1 

Fail to Reject H0 at  
α=0.01& Reject H0 
α=at 0.05& 0.1 

 
α=0.35888    β=4.1009 

 
 
Figure B.30 Fitted Weibull distribution and histogram for New Mexico  
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Table B.31 Goodness-of-fit and Distribution Parameters (New York) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.56329 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.02134  α2= 0.51224          

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.23395 

 
   3 

Fail to Reject H0 at 
α=0.01 


=0.34778  =2.3495 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.57333 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.05315 β=5996.3 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.45551 

 
   5 

Reject H0 at 
α=0.01,0.05 & 0.1 


=1077.8  =-303.45 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.1503 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=3.1192    μ=2.5743 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.40887 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=1382.4      μ=318.69 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.12646 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.36976     β=58.34 

 
 
 
Figure B.31 Fitted Weibull distribution and histogram for New York  
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Table B.32 Goodness-of-fit and Distribution Parameters (North Carolina) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.5027 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.03147  α2= 0.46144         

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.19511 

 
   3 

Fail to Reject H0 at 
α=0.01,0.05  


=0.39007  =1.4945 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.4528 

 
5 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.08472  β=1919.8 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.48675 

 
   6 

Reject H0 at 
α=0.01,0.05 & 0.1 


=435.68  =-88.841 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.165 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.8891    μ=1.9369 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.41655 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=558.78      μ=162.64 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.1212 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.37056    β=28.82 

 
 
 
 
Figure B.32 Fitted Weibull distribution and histogram for North Carolina  
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Table B.33 Goodness-of-fit and Distribution Parameters (North Dakota) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.65368 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.03153  α2= 0.62075          

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.21701 

 
   1 

Fail to Reject H0 at 
α=0.01 


=0.33741  =0.35109 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.46854 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.06972  β=2049.4 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.45886 

 
   5 

Reject H0 at 
α=0.01,0.05 & 0.1 


=421.94  =-100.66 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.24967 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=3.3834    μ=0.73847 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.39588 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=541.15      μ=142.89 

 
Weibull 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.21975 

 
2 

Fail to Reject H0 at 
α=0.01& Reject H0 at 
α=0.05&0.1 

 
α=0.29678 β=12.057 

 
 
 
Figure B.33 Fitted Weibull distribution and histogram for North Dakota  
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Table B.34 Goodness-of-fit and Distribution Parameters (Ohio) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.33175 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.10483 α2=0.85078           

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.25262 

 
   4 

Reject H0 at 
α=0.01,0.05 & 0.1 


=0.36124  =3.1683 

 
Gamma 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.20726 

 
3 

Fail to Reject H0 at 
α=0.01& Reject H0 at 
α=0.05& 0.1 

 
α= 0.19903 β=708.47 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.38791 

 
   7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=246.43  =-1.2424 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

 
0.1805 

 
0.1864 

 
2 

Fail to Reject H0 at 
α=0.01 & 0.05& Reject 
H0 at α=0.1 

 
σ=2.8786    μ=2.7699 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.32776 

 
5 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=316.06      μ=141.0 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.11525 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.45089    β=58.594 

 
 
Figure B.34 Fitted Weibull distribution and histogram for Ohio  
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Table B.35 Goodness-of-fit and Distribution Parameters (Oklahoma) 
 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.22327 

 
5 

Fail to Reject H0 at 
α=0.01&Reject H0 at  
α=0.05 & 0.1 

 
α1= 0.13583 α2= 1.2035            

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.15557 

 
   3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.34661  =1.453 

 
Gamma 

*** ** * 
0.2400 0.2002 0.1805 

 
0.14455 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.21808 β=647.5 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.41145 

 
   7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=235.76  =5.1206 

 *** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.16339 

 
Lognormal 4 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=3.1717    μ=2.0678 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.34327 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 

 

σ=302.37      μ=141.2 
 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.15355 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.36467     β=37.261 

 
 
Figure B.35 Fitted gamma distribution and histogram for Oklahoma  
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Table B.36 Goodness-of-fit and Distribution Parameters (Oregon) 
 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.57411 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.03998 α2= 0.51667           

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.19927 

 
   3 

Fail to Reject H0 at 
α=0.01,0.05 


=0.36205  =1.455 

 
Gamma 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.33598 

 
4 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.09995 β=2647.5 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.48226 

 
   6 

Reject H0 at 
α=0.01,0.05 & 0.1 


=652.6  =-112.08 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.12193 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=3.1612   μ=2.0246 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.4129 

 
5 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=836.99      μ=264.61 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.09211 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.33837    β=36.15 

 
 
 
Figure B.36 Fitted Weibull distribution and histogram for Oregon  
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Table B.37 Goodness-of-fit and Distribution Parameters (Pennsylvania)  
 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.80176 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.01217  α2= 0.33168          

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.17123 

 
   3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.35102  =1.9519 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.60094 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.04102 β=22789.0 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.51633 

 
   5 

Reject H0 at 
α=0.01,0.05 & 0.1 


=3598.8  =-1142.4 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.11213 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=3.337    μ=2.4029 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.44574 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=4615.6      μ=934.83 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.11045 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.30622     β=59.187 

 
 
 
Figure B.37 Fitted Weibull distribution and histogram for Pennsylvania  
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Table B.38 Goodness-of-fit and Distribution Parameters (Rhode Island) 
 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.89275 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.00517  α2= 0.16262           

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.44119 

 
   2 

Reject H0 at 
α=0.01,0.05 & 0.1 


=0.58813  =0.05186 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.72122 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.03093 β=766.62 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.57122 

 
   5 

Reject H0 at 
α=0.01,0.05 & 0.1 


=105.12  =-36.967 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.46744 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=1.8918    μ=-1.8347 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.50198 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=134.83      μ=23.714 

 
Weibull 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.42495 

 
1 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.3223     β=0.51817 

 
 
Figure B.38 Fitted Weibull distribution and histogram for Rhode Island  
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Table B.39 Goodness-of-fit and Distribution Parameters (South Carolina) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.68266 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.03277 α2= 0.68169          

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.1604 

 
   3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.52063  =0.65812 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.57912 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.06889 β=340.18 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.44536 

 
   5 

Reject H0 at 
α=0.01,0.05 & 0.1 


=69.616  =-16.749 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.14486 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.2567  μ=0.75685 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.39679 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=89.286      μ=23.435 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.12549 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.44466   β=6.6648 

 
 
 
 
Figure B.39 Fitted Weibull distribution and histogram for South Carolina  
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Table B.40 Goodness-of-fit and Distribution Parameters (South Dakota) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.24681 

 
1 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.04464  α2= 0.82388          

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.32575 

 
   2 

Reject H0 at 
α=0.01,0.05 & 0.1 


=0.30783  =0.25174 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.32575 

 
2 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.09901 β=1088.5 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.4526 

 
   5 

Reject H0 at 
α=0.01,0.05 & 0.1 


=267.06  =-46.376 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.35003 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.7839   μ=1.1993 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.38429 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=342.51      μ=107.77 

 
Weibull 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.32575 

 
2 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.33971    β=30.213 

 
 
 
 
Figure B.40 Fitted Beta distribution and histogram for South Dakota  
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Table B.41 Goodness-of-fit and Distribution Parameters (Tennessee) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.28664 

 
5 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.10145  α2= 0.72314           

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.17951 

 
   3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.42831  =2.5053 

 
Gamma 

*** 
0.2400 

** 
0.2002 

 
0.1805 

 
0.18776 

 
4 

Fail to Reject H0 at 
α=0.01&0.05 and 
Reject H0 at α=0.1 

 
α= 0.21182  β=408.49 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.38594 

 
   7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=146.58  =1.9141 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.11687 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.5857   μ=2.292 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.32286 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=188.0      μ=86.524 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.06976 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.45004    β=34.267 

 
 
Figure B.41 Fitted Weibull distribution and histogram for Tennessee  
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Table B.42 Goodness-of-fit and Distribution Parameters (Texas) 
 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.34577 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.12425 α2= 1.5681            

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.28706 

 
   4 

Reject H0 at 
α=0.01,0.05 & 0.1 


=0.33115  =14.935 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.24639 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.20094  β=3249.3 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.38043 

 
   7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=1135.7  =-2.6089 

 
Lognormal 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.20185 

 
2 

Fail to Reject H0 at 
α=0.01&Reject H0 at 
α=0.05 & 0.1 

 
σ=2.9776    μ=4.4569 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.32701 

 
5 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=1456.6      μ=652.92 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.11666 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.47334     β=314.63 

 
Figure B.42 Fitted Weibull distribution and histogram for Texas 
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Table B.43 Goodness-of-fit and Distribution Parameters (Utah) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                         
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.77512 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.01758α2= 0.30004           

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.15377 

 
   2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.45901  =0.50512 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.548 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.06427  β=892.36 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.53682 

 
   5 

Reject H0 at 
α=0.01,0.05 & 0.1 


=176.39  =-44.462 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.15093 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.5913 μ=0.65106 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.46623 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=226.23      μ=57.353 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.15512 

 
3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.36567   β=7.3315 

 
 
 
Figure B.43 Fitted Lognormal distribution and histogram for Utah  
 

Probability Density Function

Histogram Lognormal

x
120010008006004002000

f(
x)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 
 
 
 
 
 
 
 



www.manaraa.com

114 
 
 
Table B.44 Goodness-of-fit and Distribution Parameters (Vermont) 
 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.82019 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.01194  α2= 0.24812           

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.26899 

 
   1 

Reject H0 at 
α=0.01,0.05 & 0.1 


=0.44507  =0.11989 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.59908 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.05046 β=887.64 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.56859 

 
   5 

Reject H0 at 
α=0.01,0.05 & 0.1 


=155.47  =-44.947 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.33161 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.6562    μ=0.71951 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.49821 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=199.4      μ=44.792 

 
Weibull 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.28753 

 
2 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.31447    β=2.0776 

 
 
Figure B.44 Fitted Weibull distribution for Vermont  
 

Probability Density Function

Histogram Weibull

x
10008006004002000

f(
x)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 
 
 
 
 
 
 
 
 



www.manaraa.com

115 
 
 
Table B.45 Goodness-of-fit and Distribution Parameters (Virginia) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.43014 

 
6 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.06149 α2= 0.43206          

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.17259 

 
   2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 


=0.33639  =0.82306 

 
Gamma 

*** 
0.2400 

** 
0.2002 

 
0.1805 

 
0.18708 

 
4 

Fail to Reject H0 at 
α=0.01&0.05 and 
Reject H0 at α=0.1 

 
α= 0.17599 β=1383.4 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.46325 

 
   7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=452.52  =-17.722 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.17572 

 
3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=3.4068    μ=1.5682 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.3941 

 
5 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=580.37      μ=243.48 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.13564 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.30134   β=27.55 

 
 
Figure B.45 Fitted Weibull distribution and histogram for Virginia  
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Table B.46 Goodness-of-fit and Distribution Parameters (Washington) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

*** 
0.2400 

** 
0.2002 

 
0.1805 

 
0.19782 

 
5 

Fail to Reject H0 at 
α=0.01&0.05 and 
Reject H0 at α= 0.1 

 
α1= 0.1736 α2= 0.86217          

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.18501 

 
   4 

Fail to Reject H0 at 
α=0.01,0.05 


=0.37351  =1.2695 

 
Gamma 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.16112 

 
3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.35478  β=170.46 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.38572 

 
   7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=79.162  =14.781 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.14139 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.8871    μ=1.792 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.31512 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=101.53      μ=60.474 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.12295 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.41908    β=24.036 

 
 
Figure B.46 Fitted Weibull distribution and histogram for Washington  
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Table B.47 Goodness-of-fit and Distribution Parameters (West Virginia) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

*** 
0.2400 

** 
0.2002 

 
0.1805 

 
0.1929 

 
5 

Fail to Reject H0 at 
α=0.01 & 0.05 and 
Reject H0 at α=0.1 

 
α1=0.17334α2= 1.5005            

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.19007 

 
   4 

Fail to Reject H0 at 
α=0.01,0.05 


=0.37248  =2.4848 

 
Gamma 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.10984 

 
2 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.25464 β=423.49 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.36844 

 
   7 

Reject H0 at 
α=0.01,0.05 & 0.1 


=166.62  =11.66 

 
Lognormal 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.11026 

 
3 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.8608   μ=2.4794 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.30692 

 
6 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=213.7      μ=107.84 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.06315 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.44072   β=44.712 

 
 
Figure B.47 Fitted Weibull distribution and histogram for West Virginia  
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Table B.48 Goodness-of-fit and Distribution Parameters (Wisconsin) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.42755 

 
7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.04447  α2= 0.50152           

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.19645 

 
   2 

Fail to Reject H0 at 
α=0.01,0.05 


=0.36293  =0.58021 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.32797 

 
4 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.11439 β=52.889 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.39317 

 
   6 

Reject H0 at 
α=0.01,0.05 & 0.1 


=137.61  =-15.546 

 
Lognormal 

*** 
0.2400 

 
0.2002 

 
0.1805 

 
0.21393 

 
3 

Fail to Reject H0 at 
α=0.01& Reject H0 at 
α=0.05& 0.1 

 
σ=2.2137    μ=0.90321 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.35881 

 
5 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=17.888      μ=6.05 

 
Weibull 

*** 
0.2400 

** 
0.2002 

* 
0.1805 

 
0.18814 

 
1 

Fail to Reject H0 at 
α=0.01,0.05 

 
α=0.40496     β=1.3386 

 
Figure B.48 Fitted Weibull distribution and histogram for Wisconsin  
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Table B.49 Goodness-of-fit and Distribution Parameters (Wyoming) 

 

 
Distribution 

 
α=0.01 

 
α=0.05 

 
α=0.1 

     K - S 
   Statistic 

 
Rank 

 
Reject/Accept 

 
Parameters 

                           
Beta 

 
0.2400 

 
0.2002 

 
0.1805 

 
 0.60935 

 
    7 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α1= 0.03579  α2= 0.53199           

 
Frechet  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.24437 

 
   1 

Reject H0 at 
α=0.01,0.05 & 0.1 


=0.52568  =0.12718 

 
Gamma 

 
0.2400 

 
0.2002 

 
0.1805 

 
 0.42604 

 
    5  

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α= 0.08763  β=769.57 

 
Gumbel  

 
0.2400 

 
0.2002 

 
0.1805 

 
0.43299 

 
   6 

Reject H0 at 
α=0.01,0.05 & 0.1 


=13.947  =-2.0005 

 
Lognormal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.30223 

 
3 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
σ=2.7399    μ=0.52298 

 
Normal 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.36799 

 
4 

Reject H0 at  
α=0.01,0.05 & 0.1 

 
σ=227.81      μ=67.434 

 
Weibull 

 
0.2400 

 
0.2002 

 
0.1805 

 
0.27075 

 
2 

Reject H0 at 
α=0.01,0.05 & 0.1 

 
α=0.33919     β=7.1136 

 
 
 
Figure B.49 Fitted Weibull distribution and histogram for Wyoming  
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Table B.50 Goodness-of-fit and Distribution Parameters (Alaska) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

Reject/Accept  
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

N/A N/A     N/A 1=0.00312 2=0.12486 
 

 
Frechet 

3.9074 2.5018 1.9286 6.5562 1 Reject H0 at 
.01, .05, .1 

=0.49141  =0.10785 

 
Gamma  

3.9074 2.5018 1.9286 33.016 6 Reject H0 at 
.01, .05, .1 

=0.02789  =1720.6 

 
Gumbel  

3.9074 2.5018 1.9286 15.507 4 Reject H0 at 
.01, .05, .1 

=224.05  =-81.334 

 
Lognormal 

3.9074 2.5018 1.9286 7.6845 3 Reject H0 at 
.01, .05, .1 

=2.3958  =-0.92416 

 
Normal  

3.9074 2.5018 1.9286 16.292 5 Reject H0 at 
.01, .05, .1 

=287.35  =47.99 

 
Weibull 

3.9074 2.5018 1.9286 7.1517 2 Reject H0 at 
.01, .05, .1 

=0.31815  =1.543 

 
 
 
 
 
 
Table B.51 Goodness-of-fit and distribution Parameters (Arizona) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

4.108 4 Reject H0 at .01, 
.05, .1 

1=0.10565  2=0.85215 
  

 
Frechet 

3.9074 2.5018 1.9286 1.7603 3 Fail to reject H0 
at .01, .05, .1 

=0.36528  =0.59276 

 
Gamma  

3.9074 2.5018 1.9286 1.6816 2 Fail to reject H0 
at .01, .05, .1 

=0.20053  =329.58 

 
Gumbel  

3.9074 2.5018 1.9286 7.8589 6 Reject H0 at .01, 
.05, .1 

=115.07  =-0.33213 

 
Lognormal 

3.9074 2.5018 1.9286 1.5174 1 Fail to reject H0 
at .01, .05, .1 

=3.0796  =1.0949 

 
Normal  

3.9074 2.5018 1.9286 9.3794 7 Reject H0 at .01, 
.05, .1 

=147.59  =66.09 

 
Weibull 

3.9074 2.5018 1.9286 4.9351 5 Reject H0 at .01, 
.05, .1 

=0.3514  =14.039 
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Table B.52 Goodness-of-fit and Distribution Parameters (Arkansas) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

7.9559 5 Reject H0 at .01, 
.05, .1 

1=0.07626  2=0.74122 
 

 
Frechet 

3.9074 2.5018 1.9286 1.6853 3 Fail to reject H0 

at .01, .05, .1 
=0.44867  =2.9167 

 
Gamma  

3.9074 2.5018 1.9286 4.0634 4 Reject H0 at .01, 
.05, .1 

=0.15501  =748.1 

 
Gumbel  

3.9074 2.5018 1.9286 8.8481 6 Reject H0 at .01, 
.05, .1 

=229.65  =-16.595   
 

 
Lognormal 

3.9074 2.5018 1.9286 0.38291 1 Fail to reject H0 
at .01, .05, .1 

=2.5344  =2.3967 

 
Normal  

3.9074 2.5018 1.9286 10.459 7 Reject H0 at .01, 
.05, .1 

=294.53  =115.96 

 
Weibull 

3.9074 2.5018 1.9286 0.38938 2 Fail to reject H0 
at .01, .05, .1 

=0.43347  =37.938 

 
 
 
Table B.53 Goodness-of-fit and Distribution Parameters (California) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

3.7179 5 Reject H0 at .05, 
.1 

1=0.12378  2=1.2044 
 

 
Frechet 

3.9074 2.5018 1.9286 2.8082 4 Reject H0 at .05, 
.1 

=0.30267  =6.7467 

 
Gamma  

3.9074 2.5018 1.9286 0.61305 1 Fail to reject H0 
at .01, .05, .1 

=0.26245  =2954.6 

 
Gumbel  

3.9074 2.5018 1.9286 6.0016 6 Reject H0 at .01, 
.05, .1 

=1180.2  =94.21 

 
Lognormal 

3.9074 2.5018 1.9286 1.4964 3 Fail to reject H0 
at .01, .05, .1 

=3.494  =3.8289 

 
Normal  

3.9074 2.5018 1.9286 7.6197 7 Reject H0 at .01, 
.05, .1 

=1513.6  =775.42 

 
Weibull 

3.9074 2.5018 1.9286 0.73274 2 Fail to reject H0 
at .01, .05, .1 

=0.36534  =235.65 
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Table B.54 Goodness-of-fit and Distribution Parameters (Colorado) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

43.11 7 Reject H0 at .01, 
.05, .1 

1=0.01376  2=0.366 
 

 
Frechet 

3.9074 2.5018 1.9286 1.3995 1 Fail to reject H0 
at .01, .05, .1 

=0.36624  =0.36258 

 
Gamma  

3.9074 2.5018 1.9286 17.765 6 Reject H0 at .01, 
.05, .1 

=0.04317  =7179.2 

 
Gumbel  

3.9074 2.5018 1.9286 13.48 4 Reject H0 at .01, 
.05, .1 

=1163.1  =-361.4 

 
Lognormal 

3.9074 2.5018 1.9286 2.1522 2 Reject H0 at .1 =3.2801  =0.66769 

 
Normal  

3.9074 2.5018 1.9286 14.29 5 Reject H0 at .01, 
.05, .1 

=1491.7  =309.95 

 
Weibull 

3.9074 2.5018 1.9286 2.7087 3 Reject H0 at .05, 
.1 

=0.27682  =11.274 

 
 
 
 
Table B.55 Goodness-of-fit and Distribution Parameters (Connecticut) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

103.34 7 Reject H0 at .01, 
.05, .1 

1=0.0014  2=0.05033 
 

 
Frechet 

3.9074 2.5018 1.9286 3.6226 1 Reject H0 at .05, 
.1 

=0.42308  =0.12988 

 
Gamma  

3.9074 2.5018 1.9286 31.154 6 Reject H0 at .01, 
.05, .1 

=0.0243  =11237.0 

 
Gumbel  

3.9074 2.5018 1.9286 16.112 4 Reject H0 at .01, 
.05, .1 

=1365.7  =-515.28 

 
Lognormal 

3.9074 2.5018 1.9286 4.4942 2 Reject H0 at .01, 
.05, .1 

=2.9226  =-0.52569 

 
Normal  

3.9074 2.5018 1.9286 16.869 5 Reject H0 at .01, 
.05, .1 

=1751.6  =273.05 

 
Weibull 

3.9074 2.5018 1.9286 4.7135 3 Reject H0 at .01, 
.05, .1 

=0.27401  =2.9717 
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Table B.56 Goodness-of-fit and Distribution Parameters (Delaware) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

36.281 7 Reject H0 at .01, 
.05, .1 

1=0.0373  2=0.69685 
 

 
Frechet 

3.9074 2.5018 1.9286 9.9934 1 Reject H0 at .01, 
.05, .1 

=1.0171  =0.07304 

 
Gamma  

3.9074 2.5018 1.9286 26.76 6 Reject H0 at .01, 
.05, .1 

=0.08564  =5.967 

 
Gumbel  

3.9074 2.5018 1.9286 13.111 4 Reject H0 at .01, 
.05, .1 

=1.3615  =-0.27486 

 
Lognormal 

3.9074 2.5018 1.9286 11.125 3 Reject H0 at .01, 
.05, .1 

=1.0792  =-1.9796 

 
Normal  

3.9074 2.5018 1.9286 13.955 5 Reject H0 at .01, 
.05, .1 

=1.7462  =0.51104 

 
Weibull 

3.9074 2.5018 1.9286 11.023 2 Reject H0 at .01, 
.05, .1 

=0.61771  =0.26398 

 
 
 
 
 
 
Table B.57 Goodness-of-fit and Distribution Parameters (Florida) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

5.6493 5 Reject H0 at .01, 
.05, .1 

1=0.12455  2=1.01 
 

 
Frechet 

3.9074 2.5018 1.9286 2.1514 4 Reject H0 at .1 =0.40319  =1.7103 

 
Gamma  

3.9074 2.5018 1.9286 0.73108 2 Fail to reject H0 
at .01, .05, .1 

=0.29183  =231.47 

 
Gumbel  

3.9074 2.5018 1.9286 5.8126 6 Reject H0 at .01, 
.05, .1 

=97.497  =11.274 

 
Lognormal 

3.9074 2.5018 1.9286 1.0494 3 Fail to reject H0 
at .01, .05, .1 

=2.7166  =1.9869 

 
Normal  

3.9074 2.5018 1.9286 7.5772 7 Reject H0 at .01, 
.05, .1 

=125.04  =67.551 

 
Weibull 

3.9074 2.5018 1.9286 0.63002 1 Fail to reject H0 
at .01, .05, .1 

=0.43482  =27.04 
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Table B.58 Goodness-of-fit and Distribution Parameters (Georgia) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

5.0103 5 Reject H0 at .01, 
.05, .1 

1=0.12799  2=1.251 
 

 
Frechet 

3.9074 2.5018 1.9286 2.0239 3 Reject H0 at.1 =0.46065  =0.94093 

 
Gamma  

3.9074 2.5018 1.9286 2.3038 4 Reject H0 at.1 =0.20146  =139.03 

 
Gumbel  

3.9074 2.5018 1.9286 7.2109 6 Reject H0 at .01, 
.05, .1 

=48.655  =-0.07538 

 
Lognormal 

3.9074 2.5018 1.9286 0.88152 2 Fail to reject H0 
at .01, .05, .1 

=2.4362  =1.2276 

 
Normal  

3.9074 2.5018 1.9286 8.5153 7 Reject H0 at .01, 
.05, .1 

=62.403  =28.009 

 
Weibull 

3.9074 2.5018 1.9286 0.61215 1 Fail to reject H0 
at .01, .05, .1 

=0.45931  =11.242 

 
 
 
 
 
Table B.59 Goodness-of-fit and Distribution Parameters (Hawaii) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

  N/A  N/A        N/A 1=0.02509  2=0.65523 
 

 
Frechet 

3.9074 2.5018 1.9286 4.2779 2 Reject H0 at .01, 
.05, .1 

=0.44853  =0.18867 

 
Gamma  

3.9074 2.5018 1.9286 17.228 6 Reject H0 at .01, 
.05, .1 

=0.06276  =279.3 

 
Gumbel  

3.9074 2.5018 1.9286 11.725 4 Reject H0 at .01, 
.05, .1 

=54.553  =-13.961 

 
Lognormal 

3.9074 2.5018 1.9286 4.9702 3 Reject H0 at .01, 
.05, .1 

=2.512  =-0.30331 

 
Normal  

3.9074 2.5018 1.9286 12.616 5 Reject H0 at .01, 
.05, .1 

=69.967  =17.528 

 
Weibull 

3.9074 2.5018 1.9286 4.2453 1 Reject H0 at .01, 
.05, .1 

=0.37054  =2.8071 
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Table B.60 Goodness-of-fit and Distribution Parameters (Idaho) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

40.776 7 Reject H0 at .01, 
.05, .1 

1=0.01625  2=0.41534 
 

 
Frechet 

3.9074 2.5018 1.9286 1.4473 1 Fail to reject H0 
at .01, .05, .1 

=0.38104  =0.42294 

 
Gamma  

3.9074 2.5018 1.9286 18.538 6 Reject H0 at .01, 
.05, .1 

=0.04662  =3091.2 

 
Gumbel  

3.9074 2.5018 1.9286 13.087 4 Reject H0 at .01, 
.05, .1 

=520.39  =-156.27 

 
Lognormal 

3.9074 2.5018 1.9286 1.7736 2 Fail to reject H0 
at .01, .05, .1 

=3.1032  =0.74413 

 
Normal  

3.9074 2.5018 1.9286 13.945 5 Reject H0 at .01, 
.05, .1 

=667.42  =144.1 

 
Weibull 

3.9074 2.5018 1.9286 1.9573 3 Fail to reject H0 
at .01, .05 

=0.30944  =10.668 

 
 
 
Table B.61 Goodness-of-fit and Distribution Parameters (Illinois) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

3.4176 5 Fail to reject H0 
at .01 

1=0.11616  2=0.69897 
 

 
Frechet 

3.9074 2.5018 1.9286 1.8475 4 Fail to reject H0 
at .01, .05, .1 

=0.386  =6.8325 

 
Gamma  

3.9074 2.5018 1.9286 1.1067 3 Fail to reject H0 
at .01, .05, .1 

=0.24882  =1604.7 

 
Gumbel  

3.9074 2.5018 1.9286 6.9078 6 Reject H0 at .01, 
.05, .1 

=624.12  =39.033 

 
Lognormal 

3.9074 2.5018 1.9286 0.56833 1 Fail to reject H0 
at .01, .05, .1 

=2.8733  =3.4395 

 
Normal  

3.9074 2.5018 1.9286 8.4408 7 Reject H0 at .01, 
.05, .1 

=800.46  =399.28 

 
Weibull 

3.9074 2.5018 1.9286 0.57577 2 Fail to reject H0 
at .01, .05, .1 

=0.40103  =124.77 
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Table B.62 Goodness-of-fit and Distribution Parameters (Indiana)  
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

4.3473 5 Reject H0 at .01, 
.05, .1 

1=0.16043  2=1.3813 
 

 
Frechet 

3.9074 2.5018 1.9286 3.4666 4 Fail to reject H0 

at .01 
=0.41605  =7.9147 

 
Gamma  

3.9074 2.5018 1.9286 1.0673 2 Fail to reject H0 
at .01, .05, .1 

=0.27262  =705.15 

 
Gumbel  

3.9074 2.5018 1.9286 5.8454 6 Reject H0 at .01, 
.05, .1 

=287.06  =26.536 

 
Lognormal 

3.9074 2.5018 1.9286 1.3071 3 Fail to reject H0 
at .01, .05, .1 

=2.5273  =3.4747 

 
Normal  

3.9074 2.5018 1.9286 7.4316 7 Reject H0 at .01, 
.05, .1 

=368.18  =192.23 

 
Weibull 

3.9074 2.5018 1.9286 0.31924 1 Fail to reject H0 
at .01, .05, .1 

=0.50973  =101.87 

 
 
 
Table B.63 Goodness-of-fit and Distribution Parameters (Iowa) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

4.4622 5 Reject H0 at .01, 
.05, .1 

1=0.08257  2=1.0724 
 

 
Frechet 

3.9074 2.5018 1.9286 1.7716 3 Fail to reject H0 
at .01, .05, .1 

=0.35177  =3.2904 

 
Gamma  

3.9074 2.5018 1.9286 2.7571 4 Fail to reject H0 

at .01 
=0.13745  =3129.6 

 
Gumbel  

3.9074 2.5018 1.9286 8.7923 6 Reject H0 at .01, 
.05, .1 

=904.67  =-92.023 

 
Lognormal 

3.9074 2.5018 1.9286 0.61907 2 Fail to reject H0 
at .01, .05, .1 

=3.1979  =2.8773 

 
Normal  

3.9074 2.5018 1.9286 9.7695 7 Reject H0 at .01, 
.05, .1 

=1160.3  =430.16 

 
Weibull 

3.9074 2.5018 1.9286 0.50403 1 Fail to reject H0 
at .01, .05, .1 

=1160.3  =430.16 
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Table B.64 Goodness-of-fit and Distribution Parameters (Kansas) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

4.0068 5 Reject H0 at .01, 
.05, .1 

1=0.13273  2=0.76491 
 

 
Frechet 

3.9074 2.5018 1.9286 2.8239 4 Fail to reject H0 

at .01 
=0.38854  =3.232 

 
Gamma  

3.9074 2.5018 1.9286 0.89679 2 Fail to reject H0 
at .01, .05, .1 

=0.35668  =327.14 

 
Gumbel  

3.9074 2.5018 1.9286 5.1166 6 Reject H0 at .01, 
.05, .1 

=152.34  =28.756 

 
Lognormal 

3.9074 2.5018 1.9286 1.145 3 
 

Fail to reject H0 
at .01, .05, .1 

=2.7547  =2.6652 

 
Normal  

3.9074 2.5018 1.9286 6.7998 7 Reject H0 at .01, 
.05, .1 

=195.38  =116.69 

 
Weibull 

3.9074 2.5018 1.9286 0.49633 1 Fail to reject H0 
at .01, .05, .1 

=0.4517  =52.377 

 
 
 
 
Table B.65 Goodness-of-fit and Distribution Parameters (Kentucky)  
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

1.4523 2 Fail to reject H0 
at .01, .05, .1 

1=0.24354  2=1.9092 
 

 
Frechet 

3.9074 2.5018 1.9286 2.7858 4 Fail to reject H0 
at .01 

=0.30512  =3.5932 

 
Gamma  

3.9074 2.5018 1.9286 4.6989 7 Reject H0 at .01, 
.05, .1 

=0.43403  =728.97 

 
Gumbel  

3.9074 2.5018 1.9286 3.3938 5 Fail to reject H0 
at .01 

=374.45  =100.25 

 
Lognormal 

3.9074 2.5018 1.9286 1.9356 3 Fail to reject H0 
at .01, .05 

=3.4075  =3.1762 

 
Normal  

3.9074 2.5018 1.9286 4.4063 6 Reject H0 at .01, 
.05, .1 

=480.25  =316.39 

 
Weibull 

3.9074 2.5018 1.9286 1.4277 1 Fail to reject H0 
at .01, .05, .1 

=0.38  =118.44 
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Table B.66 Goodness-of-fit and Distribution Parameters (Louisiana)  
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

3.0551 4 Fail to reject H0 
at .01 

1=0.07604  2=0.79962 
 

 
Frechet 

3.9074 2.5018 1.9286 1.2005 2 Fail to reject H0 
at .01, .05, .1 

=0.31782  =1.5043 

 
Gamma  

3.9074 2.5018 1.9286 3.1494 5 Fail to reject H0 
at .01 

=0.1989  =2711.1 

 
Gumbel  

3.9074 2.5018 1.9286 8.7618 6 Reject H0 at .01, 
.05, .1 

=942.72  =-4.9287 

 
Lognormal 

3.9074 2.5018 1.9286 1.0697 1 Fail to reject H0 
at .01, .05, .1 

=3.5803  =2.2663 

 
Normal  

3.9074 2.5018 1.9286 10.251 7 Reject H0 at .01, 
.05, .1 

=1209.1  =539.22 

 
Weibull 

3.9074 2.5018 1.9286 1.3295 3 Fail to reject H0 
at .01, .05, .1 

=0.29314  =59.477 

 
 
 
 
Table B.67 Goodness-of-fit and Distribution Parameters (Maine) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

8.3589 6 
 

Reject H0 at .01, 
.05, .1 

1=0.09158  2=0.84141 
 

 
Frechet 

3.9074 2.5018 1.9286 4.2864 2 Reject H0 at .01, 
.05, .1 

=0.43424  =0.21975 

 
Gamma  

3.9074 2.5018 1.9286 4.2995 3 Reject H0 at .01, 
.05, .1 

=0.17715  =60.039 

 
Gumbel  

3.9074 2.5018 1.9286 7.4771 5 Reject H0 at .01, 
.05, .1 

=19.703  =-0.73692 

 
Lognormal 

3.9074 2.5018 1.9286 4.9759 4 Reject H0 at .01, 
.05, .1 

=2.4881  =-0.14273 

 
Normal  

3.9074 2.5018 1.9286 8.9253 7 Reject H0 at .01, 
.05, .1 

=25.27  =10.636 

 
Weibull 

3.9074 2.5018 1.9286 
 

4.1302 1 Reject H0 at .01, 
.05, .1 

=0.40767  =3.1526 
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Table B.68 Goodness-of-fit and Distribution Parameters (Maryland)  
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

48.024 7 Reject H0 at .01, 
.05, .1 

1=0.01235  2=0.33709 
 

 
Frechet 

3.9074 2.5018 1.9286 2.5774 1 Fail to reject H0 
at .01 

=0.42037  =0.20151 

 
Gamma  

3.9074 2.5018 1.9286 21.527 6 Reject H0 at .01, 
.05, .1 

=0.04118  =2018.2 

 
Gumbel  

3.9074 2.5018 1.9286 13.673 4 Reject H0 at .01, 
.05, .1 

=319.33  =-101.21 

 
Lognormal 

3.9074 2.5018 1.9286 3.5202 2 Fail to reject H0 
at .01 

=2.8481  =-0.12169 

 
Normal  

3.9074 2.5018 1.9286 14.493 5 Reject H0 at .01, 
.05, .1 

=409.56  =83.113 

 
Weibull 

3.9074 2.5018 1.9286 
 

3.8723 3 Fail to reject H0 
at .01 

=0.30436  =4.1725 

 
 
 
 
 
Table B.69 Goodness-of-fit and Distribution Parameters (Massachusetts)  
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

42.342 7 Reject H0 at .01, 
.05, .1 

1=0.01263  2=0.33802 
 

 
Frechet 

3.9074 2.5018 1.9286 6.8823 1 Reject H0 at .01, 
.05, .1 

=0.37009  =0.0975 

 
Gamma  

3.9074 2.5018 1.9286 19.159 6 Reject H0 at .01, 
.05, .1 

=0.04203  =3572.8 

 
Gumbel  

3.9074 2.5018 1.9286 13.9 4 Reject H0 at .01, 
.05, .1 

=571.12  =-179.49 

 
Lognormal 

3.9074 2.5018 1.9286 8.3413 3 Reject H0 at .01, 
.05, .1 

=3.0012  =-0.64624 

 
Normal  

3.9074 2.5018 1.9286 14.657 5 Reject H0 at .01, 
.05, .1 

=732.48  =150.17 

 
Weibull 

3.9074 2.5018 1.9286 
 

7.7848 2 Reject H0 at .01, 
.05, .1 

=0.2651  =2.8652 
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Table B.70 Goodness-of-fit and Distribution Parameters (Michigan) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

0.23544 2.5018 1.9286 
 

37.84 7 Reject H0 at .01, 
.05, .1 

1=0.01852  2=0.38736 
 

 
Frechet 

3.9074 2.5018 1.9286 2.7553 1 Fail to reject H0 
at .01 

=0.45764  =0.19928 

 
Gamma  

3.9074 2.5018 1.9286 16.846 6 Reject H0 at .01, 
.05, .1 

=0.05598  =705.04 

 
Gumbel  

3.9074 2.5018 1.9286 13.501 4 Reject H0 at .01, 
.05, .1 

=130.07  =-35.606 

 
Lognormal 

3.9074 2.5018 1.9286 3.5628 2 Fail to reject H0 
at .01 

=2.6011  =-0.2576 

 
Normal  

3.9074 2.5018 1.9286 14.643 5 Reject H0 at .01, 
.05, .1 

=166.82  =39.471 

 
Weibull 

3.9074 2.5018 1.9286 
 

3.7316 3 Fail to reject H0 
at .01 

=0.33444  =3.1638 

 
 
 
 
 
Table B.71 Goodness-of-fit and Distribution Parameters (Minnesota) 
  

 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

3.1266 5 Fail to reject H0 
at .01 

1=0.09965  2=1.2048 
 

 
Frechet 

3.9074 2.5018 1.9286 0.69938 1 Fail to reject H0 
at .01, .05, .1 

=0.36629  =1.4305 

 
Gamma  

3.9074 2.5018 1.9286 2.1443 4 Fail to reject H0 
at .01, .05 

=0.209  =951.32 

 
Gumbel  

3.9074 2.5018 1.9286 7.6876 6 Reject H0 at .01, 
.05, .1 

=339.1  =3.0954 

 
Lognormal 

3.9074 2.5018 1.9286 0.91939 2 Fail to reject H0 
at .01, .05, .1 

=3.1297  =1.9772 

 
Normal  

3.9074 2.5018 1.9286 8.9995 7 Reject H0 at .01, 
.05, .1 

=434.91  =198.83 

 
Weibull 

3.9074 2.5018 1.9286 
 

1.314 3 Fail to reject H0 
at .01, .05, .1 

=0.33466  =35.613 
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Table B.72 Goodness-of-fit and Distribution Parameters (Mississippi) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

11.332 6 Reject H0 at .01, 
.05, .1 

1=0.05343  2=0.68208 
 

 
Frechet 

3.9074 2.5018 1.9286 2.0065 3 Fail to reject H0 
at .01, .05 

=0.40729  =2.5707 

 
Gamma  

3.9074 2.5018 1.9286 7.0243 4 Reject H0 at .01, 
.05, .1 

=0.11286  =1395.8 

 
Gumbel  

3.9074 2.5018 1.9286 10.113 5 Reject H0 at .01, 
.05, .1 

=365.62  =-53.507 

 
Lognormal 

3.9074 2.5018 1.9286 0.71878 2 Fail to reject H0 
at .01, .05, .1 

=2.7597  =2.4064 

 
Normal  

3.9074 2.5018 1.9286 11.547 7 Reject H0 at .01, 
.05, .1 

=468.92  =157.53 

 
Weibull 

3.9074 2.5018 1.9286 
 

0.39846 1 Fail to reject H0 
at .01, .05, .1 

=0.40525  =42.407 

 
 
 
Table B.73 Goodness-of-fit and Distribution Parameters (Missouri)  
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

3.4844 5 Fail to reject H0 
at .01 

1=0.11516  2=1.111 
 

 
Frechet 

3.9074 2.5018 1.9286 1.7583 4 Fail to reject H0 
at .01, .05, .1 

=0.3725  =5.1655 

 
Gamma  

3.9074 2.5018 1.9286 1.1004 3 Fail to reject H0 
at .01, .05, .1 

=0.19485  =1786.2 

 
Gumbel  

3.9074 2.5018 1.9286 7.2125 6 Reject H0 at .01, 
.05, .1 

=614.75  =-6.8102 

 
Lognormal 

3.9074 2.5018 1.9286 0.52576 2 Fail to reject H0 
at .01, .05, .1 

=2.9768  =3.2223 

 
Normal  

3.9074 2.5018 1.9286 8.6266 7 Reject H0 at .01, 
.05, .1 

=788.45  =348.03 

 
Weibull 

3.9074 2.5018 1.9286 
 

0.2844 1 Fail to reject H0 
at .01, .05, .1 

=0.3936  =104.97 
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Table B.74 Goodness-of-fit and Distribution Parameters (Montana) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

21.174 7 Reject H0 at .01, 
.05, .1 

1=0.03579  2=0.53199 
 

 
Frechet 

3.9074 2.5018 1.9286 1.3023 2 Fail to reject H0 
at .01, .05, .1 

=0.43623  =0.41609 

 
Gamma  

3.9074 2.5018 1.9286 8.6487 4 Reject H0 at .01, 
.05, .1 

=0.08763  =769.57 

 
Gumbel  

3.9074 2.5018 1.9286 12.061 5 Reject H0 at .01, 
.05, .1 

=177.62  =-35.091 

 
Lognormal 

3.9074 2.5018 1.9286 1.2555 1 Fail to reject H0 
at .01, .05, .1 

=2.7399  =0.52298 

 
Normal  

3.9074 2.5018 1.9286 13.341 6 Reject H0 at .01, 
.05, .1 

=227.81  =67.434 

 
Weibull 

3.9074 2.5018 1.9286 
 

1.9709 3 Fail to reject H0 
at .01, .05 

=0.33919  =7.1136 

 
 
 
 
Table B.75 Goodness-of-fit and Distribution Parameters (Nebraska) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

6.192 6 Reject H0 at .01, 
.05, .1 

1=0.14938  2=1.6631 
 

 
Frechet 

3.9074 2.5018 1.9286 3.1514 4 Fail to reject H0 
at .01 

=0.36531  =2.523 

 
Gamma  

3.9074 2.5018 1.9286 0.5276 1 Fail to reject H0 
at .01, .05, .1 

=0.27375  =414.32 

 
Gumbel  

3.9074 2.5018 1.9286 5.3805 5 Reject H0 at .01, 
.05, .1 

=169.02  =15.86 

 
Lognormal 

3.9074 2.5018 1.9286 1.6972 3 Fail to reject H0 
at .01, .05, .1 

=2.893  =2.5221 

 
Normal  

3.9074 2.5018 1.9286 6.7444 7 Reject H0 at .01, 
.05, .1 

=216.78  =113.42 

 
Weibull 

3.9074 2.5018 1.9286 
 

0.78876 2 Fail to reject H0 
at .01, .05, .1 

=0.43647  =48.3 
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Table B.76 Goodness-of-fit and Distribution Parameters (Nevada) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

21.456 7 Reject H0 at .01, 
.05, .1 

1=0.0349  2=0.50257 
 

 
Frechet 

3.9074 2.5018 1.9286 1.7681 1 Fail to reject H0 
at .01, .05, .1 

=0.39933  =0.14745 

 
Gamma  

3.9074 2.5018 1.9286 7.7399 4 Reject H0 at .01, 
.05, .1 

=0.08865  =407.82 

 
Gumbel  

3.9074 2.5018 1.9286 11.655 5 Reject H0 at .01, 
.05, .1 

=94.673  =-18.494 

 
Lognormal 

3.9074 2.5018 1.9286 2.4613 2 Fail to reject H0 
at .01, .05 

=2.9473  =-0.39479 

 
Normal  

3.9074 2.5018 1.9286 12.986 6 Reject H0 at .01, 
.05, .1 

=121.42  =36.152 

 
Weibull 

3.9074 2.5018 1.9286 
 

2.8917 3 Fail to reject H0 
at .01 

=0.31628  =3.2109 

 
 
 
 
Table B.77 Goodness-of-fit and Distribution Parameters (New Hampshire) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

  N/A  N/A      N/A 1=0.00735  2=0.25716 
 

 
Frechet 

3.9074 2.5018 1.9286 5.1592 1 Reject H0 at .01, 
.05, .1 

=0.50323  =0.13186 

 
Gamma  

3.9074 2.5018 1.9286 27.914 6 Reject H0 at .01, 
.05, .1 

=0.03555  =921.78 

 
Gumbel  

3.9074 2.5018 1.9286 14.687 4 Reject H0 at .01, 
.05, .1 

=135.51  =-45.449 

 
Lognormal 

3.9074 2.5018 1.9286 6.0743 3 Reject H0 at .01, 
.05, .1 

=2.3679  =-0.76482 

 
Normal  

3.9074 2.5018 1.9286 15.461 5 Reject H0 at .01, 
.05, .1 

=173.8  =32.768 

 
Weibull 

3.9074 2.5018 1.9286 
 

5.8441 2 Reject H0 at .01, 
.05, .1 

=0.33445  =1.7484 
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Table B.78 Goodness-of-fit and Distribution Parameters (New Jersey) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

5.8096 5 Reject H0 at .01, 
.05, .1 

1=0.0788 2=0.9146 

 
Frechet 

3.9074 2.5018 1.9286 3.3737 1 Fail to reject H0 
at .01 

=0.28967  =0.2380 

 
Gamma  

3.9074 2.5018 1.9286 4.0263 3 Reject H0 at .01, 
.05, .1 

=0.14232  =1449.4 

 
Gumbel  

3.9074 2.5018 1.9286 8.9986 6 Reject H0 at .01, 
.05, .1 

=426.34  =-39.809 

 
Lognormal 

3.9074 2.5018 1.9286 4.1413 4 Reject H0 at .01, 
.05, .1 

=3.8085  =0.61775 

 
Normal  

3.9074 2.5018 1.9286 10.058 7 Reject H0 at .01, 
.05, .1 

=546.8  =206.28 

 
Weibull 

3.9074 2.5018 1.9286 
 

3.914 2 Reject H0 at .01, 
.05, .1 

=0.26186  =13.55 

 
 
 
 
 
Table B.79 Goodness-of-fit and Distribution Parameters (New Mexico) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

34.55 7 Reject H0 at .01, 
.05, .1 

1=0.02345  2=0.54466 
 

 
Frechet 

3.9074 2.5018 1.9286 2.2373 1 Fail to reject H0 
at .01, .05 

=0.43397  =0.24648 

 
Gamma  

3.9074 2.5018 1.9286 18.142 6 Reject H0 at .01, 
.05, .1 

=0.0562  =509.13 

 
Gumbel  

3.9074 2.5018 1.9286 12.213 4 Reject H0 at .01, 
.05, .1 

=94.108  =-25.707 

 
Lognormal 

3.9074 2.5018 1.9286 2.5867 3 Fail to reject H0 
at .01 

=2.6848  =0.00923 

 
Normal  

3.9074 2.5018 1.9286 13.114 5 Reject H0 at .01, 
.05, .1 

=120.7  =28.614 

 
Weibull 

3.9074 2.5018 1.9286 
 

2.4789 2 Fail to reject H0 
at .01, .05 

=0.35888  =4.1009 
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Table B.80 Goodness-of-fit and Distribution Parameters (New York) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

67.493 7 Reject H0 at .01, 
.05, .1 

1=0.02134  2=0.51224 
 

 
Frechet 

3.9074 2.5018 1.9286 3.2855 3 Fail to reject H0 
at .01 

=0.34778  =2.3495 

 
Gamma  

3.9074 2.5018 1.9286 19.694 6 Reject H0 at .01, 
.05, .1 

=0.05315  =5996.3 

 
Gumbel  

3.9074 2.5018 1.9286 12.653 4 Reject H0 at .01, 
.05, .1 

=1077.8  =-303.45 

 
Lognormal 

3.9074 2.5018 1.9286 1.7773 2 Fail to reject H0 
at .01, .05, .1 

=3.1192  =2.5743 

 
Normal  

3.9074 2.5018 1.9286 13.565 5 Reject H0 at .01, 
.05, .1 

=1382.4  =318.69 

 
Weibull 

3.9074 2.5018 1.9286 
 

0.89204 1 Fail to reject H0 
at .01, .05, .1 

=0.36976  =58.34 

 
 
 
 
Table B.81 Goodness-of-fit and Distribution Parameters (North Carolina) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

54.492 7 Reject H0 at .01, 
.05, .1 

1=0.03147  2=0.46144 
 

 
Frechet 

3.9074 2.5018 1.9286 2.6804 3 Fail to reject H0 
at .01 

=0.39007  =1.4945 

 
Gamma  

3.9074 2.5018 1.9286 10.156 4 Reject H0 at .01, 
.05, .1 

=0.08472  =1919.8 

 
Gumbel  

3.9074 2.5018 1.9286 11.811 5 Reject H0 at .01, 
.05, .1 

=435.68  =-88.841 

 
Lognormal 

3.9074 2.5018 1.9286 1.3058 2 Fail to reject H0 
at .01, .05, .1 

=2.8891  =1.9369 

 
Normal  

3.9074 2.5018 1.9286 13.193 6 Reject H0 at .01, 
.05, .1 

=558.78  =162.64 

 
Weibull 

3.9074 2.5018 1.9286 
 

0.93178 1 Fail to reject H0 
at .01, .05, .1 

=0.37056  =28.82 
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Table B.82 Goodness-of-fit and Distribution Parameters (North Dakota) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

23.108 7 Reject H0 at .01, 
.05, .1 

1=0.03153  2=0.62075 
 

 
Frechet 

3.9074 2.5018 1.9286 2.1541 1 Fail to reject H0 
at .01, .05 

=0.33741  =0.35109 

 
Gamma  

3.9074 2.5018 1.9286 9.916 4 Reject H0 at .01, 
.05, .1 

=0.06972  =2049.4 

 
Gumbel  

3.9074 2.5018 1.9286 11.794 5 Reject H0 at .01, 
.05, .1 

=421.94  =-100.66 

 
Lognormal 

3.9074 2.5018 1.9286 2.609 3 Fail to reject H0 
at .01 

=3.3834  =0.73847 

 
Normal  

3.9074 2.5018 1.9286 12.801 6 Reject H0 at .01, 
.05, .1 

=541.15  =142.89 

 
Weibull 

3.9074 2.5018 1.9286 
 

2.4584 2 Fail to reject H0 
at .01, .05 

=0.29678  =12.057 

 
 
 
 
 
Table B.83 Goodness-of-fit and Distribution Parameters (Ohio) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

7.463 5 Reject H0 at .01, 
.05, .1 

1=0.10483  2=0.85078 
 

 
Frechet 

3.9074 2.5018 1.9286 3.667 4 Fail to reject H0 
at .01 

=0.36124  =3.1683 

 
Gamma  

3.9074 2.5018 1.9286 2.3073 3 Fail to reject H0 
at .01, .05 

=0.19903  =708.47 

 
Gumbel  

3.9074 2.5018 1.9286 7.5028 6 Reject H0 at .01, 
.05, .1 

=246.43  =-1.2424 

 
Lognormal 

3.9074 2.5018 1.9286 1.6651 2 Fail to reject H0 
at .01, .05, .1 

=2.8786  =2.7699 

 
Normal  

3.9074 2.5018 1.9286 9.1088 7 Reject H0 at .01, 
.05, .1 

=316.06  =141.0 

 
Weibull 

3.9074 2.5018 1.9286 
 

0.59744 1 Fail to reject H0 
at .01, .05, .1 

=0.45089  =58.594 
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Table B.84 Goodness-of-fit and Distribution Parameters (Oklahoma) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

2.0054 4 Fail to reject H0 
at .01, .05 

1=0.13583  2=1.2035 
 

 
Frechet 

3.9074 2.5018 1.9286 2.1681 5 Fail to reject H0 
at .01, .05 

=0.34661  =1.453 

 
Gamma  

3.9074 2.5018 1.9286 0.96555 1 Fail to reject H0 
at .01, .05, .1 

=0.21808  =647.5 

 
Gumbel  

3.9074 2.5018 1.9286 6.681 6 Reject H0 at .01, 
.05, .1 

=235.76  =5.1206 

 
Lognormal 

3.9074 2.5018 1.9286 1.412 3 Fail to reject H0 
at .01, .05, .1 

=3.1717  =2.0678 

 
Normal  

3.9074 2.5018 1.9286 7.887 7 Reject H0 at .01, 
.05, .1 

=302.37  =141.2 

 
Weibull 

3.9074 2.5018 1.9286 
 

0.96766 2 Fail to reject H0 
at .01, .05, .1 

=0.36467  =37.261 

 
 
 
Table B.85 Goodness-of-fit and Distribution Parameters (Oregon) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

19.051 7 Reject H0 at .01, 
.05, .1 

1=0.03998  2=0.51667 
 

 
Frechet 

3.9074 2.5018 1.9286 1.7682 3 Fail to reject H0 
at .01, .05, .1 

=0.36205  =1.455 

 
Gamma  

3.9074 2.5018 1.9286 6.0362 4 Reject H0 at .01, 
.05, .1 

=0.09995  =2647.5 

 
Gumbel  

3.9074 2.5018 1.9286 11.289 5 Reject H0 at .01, 
.05, .1 

=652.6  =-112.08 

 
Lognormal 

3.9074 2.5018 1.9286 0.70042 2 Fail to reject H0 
at .01, .05, .1 

=3.1612  =2.0246 

 
Normal  

3.9074 2.5018 1.9286 12.688 6 Reject H0 at .01, 
.05, .1 

=836.99  =264.61 

 
Weibull 

3.9074 2.5018 1.9286 
 

0.6982 1 Fail to reject H0 
at .01, .05, .1 

=0.33837  =36.15 
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Table B.86 Goodness-of-fit and Distribution Parameters (Pennsylvania)  
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

48.247 7 Reject H0 at .01, 
.05, .1 

1=0.01217  2=0.33168 
 

 
Frechet 

3.9074 2.5018 1.9286 1.5408 3 Fail to reject H0 
at .01, .05, .1 

=0.35102  =1.9519 

 
Gamma  

3.9074 2.5018 1.9286 20.634 6 Reject H0 at .01, 
.05, .1 

=0.04102  =22789.0 

 
Gumbel  

3.9074 2.5018 1.9286 13.832 4 Reject H0 at .01, 
.05, .1 

=3598.8  =-1142.4 

 
Lognormal 

3.9074 2.5018 1.9286 0.62134 1 Fail to reject H0 
at .01, .05, .1 

=3.3377  =2.4029 

 
Normal  

3.9074 2.5018 1.9286 14.639 5 Reject H0 at .01, 
.05, .1 

=4615.6  =934.83 

 
Weibull 

3.9074 2.5018 1.9286 
 

0.6899 2 Fail to reject H0 
at .01, .05, .1 

=0.30622  =59.187 

 
 
 
 
Table B.87 Goodness-of-fit and Distribution Parameters (Rhode Island) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

78.475 7 Reject H0 at .01, 
.05, .1 

1=0.00517  2=0.16262 
 

 
Frechet 

3.9074 2.5018 1.9286 10.621 1 Reject H0 at .01, 
.05, .1 

=0.58813  =0.05186 

 
Gamma  

3.9074 2.5018 1.9286 32.012 6 Reject H0 at .01, 
.05, .1 

=0.03093  =766.62 

 
Gumbel  

3.9074 2.5018 1.9286 15.424 4 Reject H0 at .01, 
.05, .1 

=105.12  =-36.967 

 
Lognormal 

3.9074 2.5018 1.9286 11.461 2 Reject H0 at .01, 
.05, .1 

=1.8918  =-1.8347 

 
Normal  

3.9074 2.5018 1.9286 16.135 5 Reject H0 at .01, 
.05, .1 

=134.83  =23.712 

 
Weibull 

3.9074 2.5018 1.9286 
 

12.021 3 Reject H0 at .01, 
.05, .1 

=0.3223  =0.51817 
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Table B.88 Goodness-of-fit and Distribution Parameters (South Carolina) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

28.975 7 Reject H0 at .01, 
.05, .1 

1=0.03277  2=0.68169 
 

 
Frechet 

3.9074 2.5018 1.9286 1.7163 3 Fail to reject H0 
at .01, .05, .1 

=0.52063    =0.65812 

 
Gamma  

3.9074 2.5018 1.9286 18.236 6 Reject H0 at .01, 
.05, .1 

=0.06889    =340.18 

 
Gumbel  

3.9074 2.5018 1.9286 11.521 4 Reject H0 at .01, 
.05, .1 

=69.616      =-16.749 

 
Lognormal 

3.9074 2.5018 1.9286 0.77265 1 Fail to reject H0 
at .01, .05, .1 

=2.2567     =0.75685 

 
Normal  

3.9074 2.5018 1.9286 12.444 5 Reject H0 at .01, 
.05, .1 

=89.286     =23.435 

 
Weibull 

3.9074 2.5018 1.9286 
 

0.83799 2 Fail to reject H0 
at .01, .05, .1 

=0.44466   =6.6648 

 
 
 
 
 
Table B.89 Goodness-of-fit and Distribution Parameters (South Dakota) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

4.1177 1 Reject H0 at .01, 
.05, .1 

1=0.04464  2=0.82388 
 

 
Frechet 

3.9074 2.5018 1.9286 10.386 3 Reject H0 at .01, 
.05, .1 

=0.30783    =0.25174 

 
Gamma  

3.9074 2.5018 1.9286 8.1661 2 Reject H0 at .01, 
.05, .1 

=0.09901    =1088.5 

 
Gumbel  

3.9074 2.5018 1.9286 10.524 4 Reject H0 at .01, 
.05, .1 

=267.06      =-46.376 

 
Lognormal 

3.9074 2.5018 1.9286 17.671 6 Reject H0 at .01, 
.05, .1 

=2.7839      =1.1993 

 
Normal  

3.9074 2.5018 1.9286 11.56 5 Reject H0 at .01, 
.05, .1 

=342.51      =107.77 

 
Weibull 

3.9074 2.5018 1.9286 
 

20.646 7 Reject H0 at .01, 
.05, .1 

=0.33971    =30.213 
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Table B.90 Goodness-of-fit and Distribution Parameters (Tennessee) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

4.9121 5 Reject H0 at .01, 
.05, .1 

1=0.10145  2=0.72314 
 

 
Frechet 

3.9074 2.5018 1.9286 2.1189 4 Fail to reject H0 
at .01, .05 

=0.42831  =2.5053 

 
Gamma  

3.9074 2.5018 1.9286 1.6445 3 Fail to reject H0 
at .01, .05, .1 

=0.21182  =408.49 

 
Gumbel  

3.9074 2.5018 1.9286 7.2775 6 Reject H0 at .01, 
.05, .1 

=146.58  =1.9141 

 
Lognormal 

3.9074 2.5018 1.9286 0.74398 2 Fail to reject H0 
at .01, .05, .1 

=2.5857  =2.292 

 
Normal  

3.9074 2.5018 1.9286 9.106 7 Reject H0 at .01, 
.05, .1 

=188.0  =86.524 

 
Weibull 

3.9074 2.5018 1.9286 
 

0.353 1 Fail to reject H0 
at .01, .05, .1 

=0.45004  =34.267 

 
 
 
 
Table B.91 Goodness-of-fit and Distribution Parameters (Texas) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

7.2542 6 Reject H0 at .01, 
.05, .1 

1=0.12425  2=1.5681 
 

 
Frechet 

3.9074 2.5018 1.9286 5.1349 4 Reject H0 at .01, 
.05, .1 

=0.33115  =14.935 

 
Gamma  

3.9074 2.5018 1.9286 2.95 3 Fail to reject H0 
at .01 

=0.20094  =3249.3 

 
Gumbel  

3.9074 2.5018 1.9286 6.9637 5 Reject H0 at .01, 
.05, .1 

=1135.7  =-2.6089 

 
Lognormal 

3.9074 2.5018 1.9286 2.6114 2 Fail to reject H0 
at .01 

=2.9776  =4.4569 

 
Normal  

3.9074 2.5018 1.9286 8.2946 7 Reject H0 at .01, 
.05, .1 

=1456.6  =652.92 

 
Weibull 

3.9074 2.5018 1.9286 
 

0.87506 1 Fail to reject H0 
at .01, .05, .1 

=0.47334  =314.63 
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Table B.92 Goodness-of-fit and Distribution Parameters (Utah) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

41.116 7 Reject H0 at .01, 
.05, .1 

1=0.01758  2=0.30004 
 

 
Frechet 

3.9074 2.5018 1.9286 1.3389 2 Fail to reject H0 
at .01, .05, .1 

=0.45901  =0.50512 

 
Gamma  

3.9074 2.5018 1.9286 15.171 6 Reject H0 at .01, 
.05, .1 

=0.06427  =892.36 

 
Gumbel  

3.9074 2.5018 1.9286 13.338 4 Reject H0 at .01, 
.05, .1 

=176.39  =-44.462 

 
Lognormal 

3.9074 2.5018 1.9286 1.0287 1 Fail to reject H0 
at .01, .05, .1 

=2.5913  =0.65106 

 
Normal  

3.9074 2.5018 1.9286 14.707 5 Reject H0 at .01, 
.05, .1 

=226.23  =57.353 

 
Weibull 

3.9074 2.5018 1.9286 
 

1.3923 3 Fail to reject H0 
at .01, .05, .1 

=0.36567  =7.3315 

 
 
 
 
Table B.93 Goodness-of-fit and Distribution Parameters (Vermont) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

52.73 7 Reject H0 at .01, 
.05, .1 

1=0.01194  2=0.24812 
 

 
Frechet 

3.9074 2.5018 1.9286 3.7022 1 Fail to reject H0 
at .01 

=0.44507  =0.11989 

 
Gamma  

3.9074 2.5018 1.9286 17.815 6 Reject H0 at .01, 
.05, .1 

=0.05046  =887.64 

 
Gumbel  

3.9074 2.5018 1.9286 14.476 4 Reject H0 at .01, 
.05, .1 

=155.47  =-44.947 

 
Lognormal 

3.9074 2.5018 1.9286 4.3998 2 Reject H0 at .01, 
.05, .1 

=2.6562  =-0.71951 

 
Normal  

3.9074 2.5018 1.9286 15.673 5 Reject H0 at .01, 
.05, .1 

=199.4  =44.792 

 
Weibull 

3.9074 2.5018 1.9286 
 

4.7085 3 Reject H0 at .01, 
.05, .1 

=0.31447  =2.0776 
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Table B.94 Goodness-of-fit and Distribution Parameters (Virginia) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

7.5798 5 Reject H0 at .01, 
.05, .1 

1=0.06149  2=0.43206 
 

 
Frechet 

3.9074 2.5018 1.9286 1.2165 1 Fail to reject H0 
at .01, .05, .1 

=0.33639  =0.82306 

 
Gamma  

3.9074 2.5018 1.9286 2.6218 4 Fail to reject H0 
at .01 

=0.17599  =1383.4 

 
Gumbel  

3.9074 2.5018 1.9286 9.4263 6 Reject H0 at .01, 
.05, .1 

=452.52  =-17.722 

 
Lognormal 

3.9074 2.5018 1.9286 1.3179 2 Fail to reject H0 
at .01, .05, .1 

=3.4068  =1.5682 

 
Normal  

3.9074 2.5018 1.9286 11.282 7 Reject H0 at .01, 
.05, .1 

=580.37  =243.48 

 
Weibull 

3.9074 2.5018 1.9286 
 

1.5662 3 Fail to reject H0 
at .01, .05, .1 

=0.30134  =27.55 

 
 
Table B.95 Goodness-of-fit and Distribution Parameters (Washington) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

1.4545 3 Fail to reject H0 
at .01, .05, .1 

1=0.1736  2=0.86217 
 

 
Frechet 

3.9074 2.5018 1.9286 2.1427 5 Fail to reject H0 
at .01, .05 

=0.37351  =1.2695 

 
Gamma  

3.9074 2.5018 1.9286 1.7603 4 Fail to reject H0 
at .01, .05, .1 

=0.35478  =170.46 

 
Gumbel  

3.9074 2.5018 1.9286 5.1396 6 Reject H0 at .01, 
.05, .1 

=79.162  =14.781 

 
Lognormal 

3.9074 2.5018 1.9286 1.4353 2 Fail to reject H0 
at .01, .05, .1 

=2.8871  =1.792 

 
Normal  

3.9074 2.5018 1.9286 6.9479 7 Reject H0 at .01, 
.05, .1 

=101.53  =60.474 

 
Weibull 

3.9074 2.5018 1.9286 
 

0.98067 1 Fail to reject H0 
at .01, .05, .1 

=0.41908  =24.036 
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Table B.96 Goodness-of-fit and Distribution Parameters (West Virginia) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

2.394 5 Fail to reject H0 
at .01, .05 

1=0.17334  2=1.5005 
 

 
Frechet 

3.9074 2.5018 1.9286 2.1727 4 Fail to reject H0 
at .01, .05 

=0.37248  =2.4848 

 
Gamma  

3.9074 2.5018 1.9286 0.5019 2 Fail to reject H0 
at .01, .05, .1 

=0.25464  =423.49 

 
Gumbel  

3.9074 2.5018 1.9286 5.7509 6 Reject H0 at .01, 
.05, .1 

=166.62  =11.66 

 
Lognormal 

3.9074 2.5018 1.9286 0.69275 3 Fail to reject H0 
at .01, .05, .1 

=2.8608  =2.4794 

 
Normal  

3.9074 2.5018 1.9286 6.9397 7 Reject H0 at .01, 
.05, .1 

=213.7  =107.84 

 
Weibull 

3.9074 2.5018 1.9286 
 

0.22348 1 Fail to reject H0 
at .01, .05, .1 

=0.44072  =44.712 

 
 
 
 
Table B.97 Goodness-of-fit and Distribution Parameters (Wisconsin) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

7.2542 5 Reject H0 at .01, 
.05, .1 

1=0.07984  2=1.1042 
 

 
Frechet 

3.9074 2.5018 1.9286 2.3455 3 Fail to reject H0 
at .01, .05 

=0.36293  =0.58021 

 
Gamma  

3.9074 2.5018 1.9286 3.9128 4 Reject H0 at .01, 
.05, .1 

=0.13102  =487.58 

 
Gumbel  

3.9074 2.5018 1.9286 8.545 6 Reject H0 at .01, 
.05, .1 

=137.61  =-15.546 

 
Lognormal 

3.9074 2.5018 1.9286 2.3259 2 Fail to reject H0 
at .01, .05 

=3.0542  =1.0924 

 
Normal  

3.9074 2.5018 1.9286 9.6262 7 Reject H0 at .01, 
.05, .1 

=176.49  =63.883 

 
Weibull 

3.9074 2.5018 1.9286 
 

1.8844 1 Fail to reject H0 
at .01, .05, .1 

=0.35561  =13.864 
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Table B.98 Goodness-of-fit and Distribution Parameters (Wyoming) 
 
 
Distribution 

 
α =0.01 

 
α =0.05 

 
α = 0.1 

Anderson 
 Darling 

 
Rank 

 
Reject/Accept 

 
Parameters 

 
Beta 

3.9074 2.5018 1.9286 
 

19.972 7 Reject H0 at .01, 
.05, .1 

1=0.04447  2=0.50152 
 

 
Frechet 

3.9074 2.5018 1.9286 2.7093 1 Fail to reject H0 
at .01 

=0.52568  =0.12718 

 
Gamma  

3.9074 2.5018 1.9286 8.7977 4 Reject H0 at .01, 
.05, .1 

=0.11439  =52.889 

 
Gumbel  

3.9074 2.5018 1.9286 10.128 5 Reject H0 at .01, 
.05, .1 

=13.947  =-2.0005 

 
Lognormal 

3.9074 2.5018 1.9286 3.7711 2 Fail to reject H0 
at .01 

=2.2137  =-0.90321 

 
Normal  

3.9074 2.5018 1.9286 11.536 6 Reject H0 at .01, 
.05, .1 

=17.888  =6.05 

 
Weibull 

3.9074 2.5018 1.9286 
 

4.041 3 Reject H0 at .01, 
.05, .1 

=0.40496  =1.3386 
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